ГОДОВОЙ ОТЧЕТ
О ДЕЯТЕЛЬНОСТИ ФЕДЕРАЛЬНОЙ СЛУЖБЫ
ПО ЭКОЛОГИЧЕСКОМУ, ТЕХНОЛОГИЧЕСКОМУ
И АТОМНОМУ НАДЗОРУ
В 2015 ГОДУ

Москва
2016
СОДЕРЖАНИЕ

Введение ... 5
I. Общая характеристика Федеральной службы по экологическому, технологическому и атомному надзору ... 6
 1.1. Задачи и основные направления деятельности ... 6
 1.2. Организационная структура Федеральной службы по экологическому, технологическому и атомному надзору ... 12
II. Регулирующая деятельность .. 17
 2.1. Нормативно-правовое регулирование ... 17
 2.2. Контроль и надзор, лицензионная и разрешительная деятельность 27
 2.2.1. Атомные станции ... 27
 2.2.2. Объекты ядерного топливного цикла ... 42
 2.2.3. Исследовательские ядерные установки ... 66
 2.2.4. Ядерные энергетические установки судов и объекты их жизнеобеспечения ... 70
 2.2.5. Радиационно опасные объекты .. 74
 2.2.6. Системы государственного учета и контроля ядерных материалов, радиоактивных веществ и радиоактивных отходов .. 89
 2.2.6.1. Система государственного учета и контроля ядерных материалов ... 89
 2.2.6.2. Система государственного учета и контроля радиоактивных веществ и радиоактивных отходов ... 94
 2.2.7. Объекты ведения горных работ ... 97
 2.2.7.1. Угольная промышленность ... 97
 2.2.7.2. Горнорудная и нерудная промышленность, объекты подземного строительства ... 108
 2.2.8. Маркшейдерские работы и безопасность недропользования 120
 2.2.9. Объекты нефтегазодобывающей промышленности 127
 2.2.10. Объекты нефтегазоперерабатывающей промышленности и объекты нефтепродуктообеспечения ... 134
 2.2.11. Объекты магистрального трубопроводного транспорта и подземного хранения газа ... 144
 2.2.12. Металлургические и коксохимические производства и объекты 152
 2.2.13. Объекты газораспределения и газопотребления 162
 2.2.14. Взрывопожароопасные и химически опасные производства и объекты ... 168
 2.2.14.1. Предприятия химического комплекса ... 168
 2.2.14.2. Предприятия оборонно-промышленного комплекса 176
 2.2.15. Производство, хранение и применение взрывчатых материалов промышленного назначения ... 181
 2.2.16. Транспортирование опасных веществ .. 189
 2.2.17. Взрывопожароопасные объекты хранения и переработки растительного сырья ... 193
 2.2.18. Объекты, на которых используется оборудование, работающее под давлением ... 197
 2.2.19. Объекты, на которых используются стационарно установленные грузоподъемные механизмы и подъемные сооружения 206

© Оформление. ЗАО НТЦ ПБ, 2016
Годовой отчет о деятельности Федеральной службы

2.2.20. Электрические станции, котельные, электрические и тепловые установки и сети ... 234
2.2.21. Гидротехнические сооружения ... 241
2.2.22. Государственный строительный надзор .. 245
 2.2.22.1. Осуществление государственного строительного надзора при строительстве, реконструкции объектов капитального строительства .. 245
 2.2.22.2. Надзор за деятельностью саморегулируемых организаций в области инженерных изысканий, архитектурно-строительного проектирования, строительства, реконструкции, капитального ремонта объектов капитального строительства, а также ведение государственного реестра указанных организаций .. 264
2.3. Организация и результаты экспертной деятельности 271
 2.3.1. Экспертиза безопасности объектов использования атомной энергии 271
 2.3.2. Экспертиза промышленной безопасности .. 282
2.4. Регистрация объектов в государственном реестре опасных производственных объектов ... 284
2.5. Декларирование промышленной безопасности .. 286
2.6. Научно-техническая поддержка регулирующей деятельности .. 288
 2.6.1. Научно-исследовательские работы в области ядерной и радиационной безопасности ... 288
 2.6.1.1. Государственное задание ФБУ «НТЦ ЯРБ» .. 288
 2.6.1.2. Деятельность ФБУ «НТЦ ЯРБ» в рамках федеральной целевой программы «Обеспечение ядерной и радиационной безопасности на 2008 год и на период до 2015 года» .. 291
 2.6.2. Научно-исследовательские работы в области безопасности электрических и тепловых установок и сетей .. 300
2.7. Информирование общественности ... 301
2.8. Работа с обращениями граждан ... 304
III. Международное сотрудничество ... 306
 3.1. Международное сотрудничество в области атомного надзора 306
 3.2. Международное сотрудничество в области технологического надзора 324
IV. Кадровая политика ... 335
V. Информационное и техническое обеспечение деятельности 345
VI. Финансирование деятельности ... 353
Заключение ... 356
ВВЕДЕНИЕ

В настоящем отчете представлена информация о деятельности Федеральной службы по экологическому, технологическому и атомному надзору (далее — Ростехнадзор) в 2015 г., которая касается: сферы деятельности, основных задач и полномочий Ростехнадзора; схемы управления и организационной структуры системы Ростехнадзора; состояния и направлений совершенствования правовой основы деятельности Ростехнадзора; состояния контрольной, надзорной, лицензионной и разрешительной деятельности Ростехнадзора; анализа (оценки) безопасности и противоаварийной устойчивости поднадзорных Ростехнадзору производств и объектов; результатов экспертной деятельности; состояния регистрации опасных производственных объектов и декларирования промышленной безопасности; основных результатов научно-технической поддержки деятельности Ростехнадзора; информирования общественности о деятельности Ростехнадзора; международного сотрудничества Ростехнадзора с зарубежными странами и международными организациями; кадровой политики Ростехнадзора; информационного и технического обеспечения и финансирования деятельности Ростехнадзора.
I. ОБЩАЯ ХАРАКТЕРИСТИКА ФЕДЕРАЛЬНОЙ СЛУЖБЫ ПО ЭКОЛОГИЧЕСКОМУ, ТЕХНОЛОГИЧЕСКОМУ И АТОМНОМУ НАДЗОРУ

1.1. Задачи и основные направления деятельности

Федеральная служба по экологическому, технологическому и атомному надзору образована в соответствии с Указом Президента Российской Федерации от 20 мая 2004 г. № 649 «Вопросы структуры федеральных органов исполнительной власти» путем преобразования Федеральной службы по технологическому надзору и Федеральной службы по атомному надзору в Федеральную службу по экологическому, технологическому и атомному надзору.

Руководство деятельностью Федеральной службы по экологическому, технологическому и атомному надзору осуществляет Правительство Российской Федерации.

В соответствии с Положением о Федеральной службе по экологическому, технологическому и атомному надзору, утвержденным постановлением Правительства Российской Федерации от 30 июля 2004 г. № 401, Федеральная служба по экологическому, технологическому и атомному надзору (Ростехнадзор) является федеральным органом исполнительной власти, осуществляющим функции по выработке и реализации государственной политики и нормативно-правовому регулированию в установленной сфере деятельности, а также в сфере технологического и атомного надзора, функции по контролю и надзору в сфере безопасного ведения работ, связанных с пользованием недрами, промышленной безопасности, безопасности при использовании атомной энергии (за исключением деятельности по разработке, изготовлению, испытанию, эксплуатации и утилизации ядерного оружия и ядерных энергетических установок военного назначения), безопасности электрических и тепловых установок и сетей (кроме бытовых установок и сетей), безопасности гидротехнических сооружений (за исключением судоходных и портовых гидротехнических сооружений), безопасности производства, хранения и применения взрывчатых материалов промышленного назначения, а также специальные функции в области государственной безопасности в указанной сфере.

Федеральная служба по экологическому, технологическому и атомному надзору является:
уполномоченным органом государственного регулирования безопасности при использовании атомной энергии (органом федерального государственного надзора в области использования атомной энергии);
уполномоченным органом в области промышленной безопасности (органом федерального государственного надзора в области промышленной безопасности);
органом государственного горного надзора;
органом федерального государственного энергетического надзора;
органом федерального государственного строительного надзора;
регулирующим органом в соответствии с Конвенцией о ядерной безопасности и Объединенной конвенцией о безопасности обращения с отработавшим топливом и о безопасности обращения с радиоактивными отходами, а также компетентным органом Российской Федерации в соответствии с Поправкой к Конвенции о физической защите ядерного материала.

Федеральная служба по экологическому, технологическому и атомному надзору осуществляет в части, касающейся функций в установленной сфере деятельности, полномочия органов, которые в международных договорах Российской Федерации выступают в качестве органов, осуществляющих необходимые меры, направленные на выполнение вытекающих из этих договоров обязательств Российской Федерации.

Федеральная служба по экологическому, технологическому и атомному надзору в своей деятельности руководствуется Конституцией Российской Федерации, федеральными конституционными законами, федеральными законами, актами Президента Российской Федерации и Правительства Российской Федерации, международными договорами Российской Федерации, а также настоящим Положением.

Федеральная служба по экологическому, технологическому и атомному надзору осуществляет свою деятельность непосредственно и через свои территориальные органы во взаимодействии с другими федеральными органами государственной власти, органами государственной власти субъектов Российской Федерации, органами местного самоуправления, общественными объединениями и иными организациями.

Федеральная служба по экологическому, технологическому и атомному надзору вносит в Правительство Российской Федерации проекты федеральных законов, нормативных правовых актов Президента Российской Федерации и Правительства Российской Федерации и другие документы, по которым требуется решение Правительства Российской Федерации, по вопросам, относящимся к сфере деятельности Службы, а также проект ежегодного плана работы и прогнозные показатели деятельности Службы.

На основании и во исполнение Конституции Российской Федерации, федеральных конституционных законов, федеральных законов, актов Президента Российской Федерации и Правительства Российской Федерации Федеральная служба по экологическому, технологическому и атомному надзору самостоятельно принимает следующие нормативные правовые акты в установленной сфере деятельности:

- федеральные нормы и правила в области использования атомной энергии в соответствии с законодательством Российской Федерации;
- порядок выдачи разрешений на право ведения работ в области использования атомной энергии работникам объектов использования атомной энергии в соответствии с перечнем должностей, утвержденным Правительством Российской Федерации;
- требования к составу и содержанию документов, обосновывающих обеспечение безопасности ядерных установок, радиационных источников, пунктов хранения ядерных материалов и радиоактивных веществ, хранилищ радиоактивных отходов и (или) безопасности осуществляемой деятельности в области использования атомной энергии, необходимых для лицензирования деятельности в этой области, а также порядок проведения экспертизы указанных документов;
- порядок представления эксплуатирующей организацией в уполномоченный орган государственного регулирования безопасности при использовании атомной энергии документов, содержащих результаты оценки безопасности ядерной установки, пункта хранения ядерных материалов и радиоактивных веществ, пункта хра-
нения, хранилища радиоактивных отходов и обосновывающих безопасность их эксплуатации, а также требования к составу и содержанию этих документов;

пользоватей безопасности (экспресс-обоснования безопасности) объектов использования атомной энергии и (или) видов деятельности в области использования атомной энергии;

пользователей диапазонов и осуществления надзора за системой государственного учета и контроля ядерных материалов;

требования к регистрации объектов в государственном реестре опасных производственных объектов и к ведению этого реестра;

порядок оформления декларации промышленной безопасности опасных производственных объектов и перечень включаемых в нее сведений;

порядок проведения технического расследования причин аварий, инцидентов и случаев утраты взрывчатых материалов промышленного назначения;

форма декларации безопасности гидротехнических сооружений;

порядок формирования и регламент работы экспертных комиссий по проведению государственной экспертизы деклараций безопасности гидротехнических сооружений;

порядок формирования и ведения дел при осуществлении государственного строительного надзора, требования, предъявляемые к включаемым в такие дела документам;

форма свидетельства о допуске к определенному виду или видам работ, которые оказывают влияние на безопасность объектов капитального строительства;

своды правил в соответствии с законодательством Российской Федерации о техническом регулировании;

методики разработки и установления нормативов предельно допустимых выбросов радиоактивных веществ в атмосферный воздух и нормативов допустимых сбросов радиоактивных веществ в водные объекты;

порядок выдачи и форма разрешений на выбросы и сбросы радиоактивных веществ;

федеральные нормы и правила в области промышленной безопасности;

порядок согласования границ охранных зон в отношении объектов электросетевого хозяйства;

особенности оценки соответствия продукции, в отношении которой устанавливаются требования, связанные с обеспечением безопасности в области использования атомной энергии, а также процессов ее проектирования (включая изыскания), производства, строительства, монтажа, наладки, эксплуатации, хранения, перевозки, реализации, утилизации и захоронения;

нормативные правовые акты по другим вопросам в установленной сфере деятельности, за исключением вопросов, правовое регулирование которых в соответствии с Конституцией Российской Федерации и федеральными конституционными законами, федеральными законами, актами Президента Российской Федерации и Правительства Российской Федерации осуществляется исключительно федеральными конституционными законами, федеральными законами, нормативными правовыми актами Президента Российской Федерации и Правительства Российской Федерации.

На основании федеральных законов, актов Президента Российской Федерации и Правительства Российской Федерации Федеральная служба по экологическому, технологическому и атомному надзору осуществляет контроль и надзор:
за соблюдением норм и правил в области использования атомной энергии, за условиями действия разрешений (лицензий) на право ведения работ в области использования атомной энергии;

за ядерной, радиационной, технической и пожарной безопасностью (на объектах использования атомной энергии);

за физической защитой ядерных установок, радиационных источников, пунктов хранения ядерных материалов и радиоактивных веществ, за системами единого государственного учета и контроля ядерных материалов, радиоактивных веществ, радиоактивных отходов;

за выполнением международных обязательств Российской Федерации в области обеспечения безопасности при использовании атомной энергии;

за соблюдением требований промышленной безопасности при проектировании, строительстве, эксплуатации, консервации и ликвидации опасных производственных объектов, изготовлении, монтаже, наладке, обслуживании и ремонте технических устройств, применяемых на опасных производственных объектах, транспортировании опасных веществ на опасных производственных объектах;

за соблюдением в пределах своей компетенции требований безопасности в электроэнергетике;

за безопасным ведением работ, связанных с пользованием недрами;

за соблюдением требований пожарной безопасности на подземных объектах и при ведении взрывных работ;

за соблюдением собственниками гидротехнических сооружений и эксплуатирующими организациями норм и правил безопасности гидротехнических сооружений (за исключением судоходных гидротехнических сооружений);

за соблюдением в пределах своей компетенции требований законодательства Российской Федерации в области обращения с радиоактивными отходами;

за своевременным возвратом облученных тепловыделяющих сборок ядерных реакторов и продуктов их переработки в государство поставщика, с которым Российская Федерация заключила международный договор, предусматривающий ввоз в Российскую Федерацию облученных тепловыделяющих сборок ядерных реакторов в целях временного технологического хранения и переработки на условиях возврата продуктов переработки (в пределах своей компетенции);

за соблюдением в пределах своей компетенции собственниками нежилых зданий, строений, сооружений в процессе их эксплуатации требований энергетической эффективности, предъявляемых к таким зданиям, строениям, сооружениям, требований об их оснащении приборами учета используемых энергетических ресурсов;

за соблюдением юридическими лицами, в уставных капиталах которых доля (вклад) Российской Федерации, субъекта Российской Федерации, муниципального образования составляет более чем 50 % и (или) в отношении которых Российская Федерация, субъект Российской Федерации, муниципальное образование имеют право прямо или косвенно распоряжаться более чем 50 % общего количества голосов, приходящихся на голосующие акции (доли), составляющие уставные капиталы таких юридических лиц, государственными и муниципальными унитарными предприятиями, государственными и муниципальными учреждениями, государственными компаниями, государственными корпорациями, а также юридическими лицами, имущество которых либо более чем 50 % акций или долей в уставном капитале которых принадлежит государственным корпорациям, требо-
вания о принятии программ в области энергосбережения и повышения энергетической эффективности;
за проведением обязательного энергетического обследования в установленный срок;
за соблюдением требований технических регламентов в установленной сфере деятельности;
осуществляет в соответствии с законодательством Российской Федерации лицензирование деятельности в области использования атомной энергии, а также лицензирование других видов деятельности, отнесенных к компетенции Службы.
Федеральная служба по экологическому, технологическому и атомному надзору выдает разрешения:
на право ведения работ в области использования атомной энергии работникам объектов использования атомной энергии;
на эксплуатацию поднадзорных гидротехнических сооружений;
на выбросы и сбросы радиоактивных веществ в окружающую среду;
на применение взрывчатых материалов промышленного назначения и на ведение работ с указанными материалами;
на допуск к эксплуатации энергопринимающих устройств потребителей электрической энергии, объектов по производству электрической энергии, а также объектов электросетевого хозяйства, принадлежащих сетевым организациям и иным лицам (в случаях, предусмотренных нормативными правовыми актами Российской Федерации).
Федеральная служба по экологическому, технологическому и атомному надзору:
устанавливает нормативы предельно допустимых выбросов радиоактивных веществ в атмосферный воздух и нормативы допустимых сбросов радиоактивных веществ в водные объекты;
регистрирует опасные производственные объекты и ведет государственный реестр таких объектов;
проводит проверки (инспекции) соблюдения юридическими и физическими лицами требований законодательства Российской Федерации, нормативных правовых актов, норм и правил в установленной сфере деятельности.
Федеральная служба по экологическому, технологическому и атомному надзору согласовывает:
квалификационные справочники должностей руководителей и специалистов (служащих), в которых определяются квалификационные требования к работникам, получающим разрешение на право ведения работ в области использования атомной энергии;
перечни радиоизотопной продукции, ввоз и вывоз которой не требуют лицензий; правила эксплуатации гидротехнического сооружения;
границы охранных зон объектов электросетевого хозяйства.
Федеральная служба по экологическому, технологическому и атомному надзору:
организует и обеспечивает функционирование системы контроля за объектами использования атомной энергии при возникновении на них аварий;
создает, развивает и поддерживает функционирование автоматизированной системы информационно-аналитической службы, в том числе для целей единой государственной автоматизированной системы контроля радиационной обстановки на территории Российской Федерации;
руководит в составе единой государственной системы предупреждения и ликви-
дации чрезвычайных ситуаций деятельностью функциональных подсистем контроля
за химически опасными и взрывоопасными объектами, а также за ядерно и радиа-
ционно опасными объектами;

в установленном законодательством Российской Федерации порядке размещает,
заказы и заключает государственные контракты, а также иные гражданско-пра-
вовые договоры на поставки товаров, выполнение работ, оказание услуг для нужд
Службы, а также на проведение научно-исследовательских работ для государствен-
ных нужд в установленной сфере деятельности;

выдает заключение о соответствии построенного, реконструированного объек-
ta капитального строительства требованиям технических регламентов и проектной
документации;

утверждает декларации безопасности поднадзорных гидротехнических сооруже-
ний, составляемые на стадии эксплуатации, вывода из эксплуатации гидротехни-
ческого сооружения, а также после его реконструкции, капитального ремонта, вос-
становления или консервации;

обобщает практику применения законодательства Российской Федерации в уста-
новленной сфере деятельности;

разрабатывает, утверждает и вводит в действие руководства по безопасности при
использовании атомной энергии (в пределах своей компетенции);

участует в работе по аккредитации в области использования атомной энергии;

осуществляет прием и учет уведомлений о начале осуществления юридическими
лицами и индивидуальными предпринимателями отдельных видов работ и услуг по
перечню, утвержденному Правительством Российской Федерации;

ведет реестр деклараций промышленной безопасности;

ведет реестр заключений экспертизы промышленной безопасности;

осуществляет функции главного распорядителя и получателя средств федераль-
ного бюджета, предусмотренных на содержание Службы и реализацию возложе-
ных на Службу функций;

организует прием граждан, обеспечивает своевременное и полное рассмотрение
устных и письменных обращений граждан, принятие по ним решений и направление
ответов заявителям в установленный законодательством Российской Федерации срок;

обеспечивает в пределах своей компетенции защиту сведений, составляющих го-
сударственную тайну;

обеспечивает мобилизационную подготовку Службы, а также контроль и коор-
dинацию деятельности подведомственных организаций по их мобилизационной
подготовке;

осуществляет организацию и ведение гражданской обороны в Службе, а также
контроль и координацию деятельности подведомственных организаций по выпол-
nению ими полномочий в области гражданской обороны;

организует дополнительное профессиональное образование работников Службы;

осуществляет порядок и сроки проведения аттестации кандидатов на должность
руководителя образовательных организаций, подведомственных Службе, и руково-
dателей указанных организаций;

взаимодействует в установленном порядке с органами государственной власти
иностранных государств и международными организациями в установленной сфе-
ре деятельности;
осуществляет в соответствии с законодательством Российской Федерации рабо-
ту по комплектованию, хранению, учету и использованию архивных документов,
образовавшихся в процессе деятельности Службы;
осуществляет иные полномочия в установленной сфере деятельности, если такие
полномочия предусмотрены федеральными законами, нормативными правовыми ак-
tами Президента Российской Федерации или Правительства Российской Федерации.

1.2. Организационная структура Федеральной службы по экологическому,
tехнологическому и атомному надзору

В 2015 г. в Федеральной службе по экологическому, технологическому и атомно-
му надзору сохранена двухзвенная система управления деятельностью (централь-
ный аппарат — территориальные органы федерального подчинения).

Распределение полномочий и сложившаяся организационная структура терри-
ториальных органов и центрального аппарата Ростехнадзора создают условия для
обеспечения комплексного подхода при организации надзорной деятельности,
исключения внутреннего дублирования функций, усиления контроля и координа-
ции действий территориальных управлений в федеральных округах, приближения
контроля и надзора, лицензирования и разрешительной деятельности к поднадзор-
ным объектам в регионах.

Организационная структура Ростехнадзора в 2015 г. включала 16 структурных по-
dразделений центрального аппарата, 6 межрегиональных территориальных управ-
лений по надзору за ядерной и радиационной безопасностью, 23 территориальных
управления по технологическому и экологическому надзору межрегионального и
регионального уровня.

Организационная структура Федеральной службы по экологическому, техноло-
гическому и атомному надзору, действовавшая в 2014 г., представлена на рис. 1.

Рис. 1. Организационная структура Федеральной службы по экологическому,
tехнологическому и атомному надзору
В целях обеспечения реализации возложенных на Ростехнадзор полномочий структурные подразделения центрального аппарата сформированы по отраслевому признаку. В 2015 г. структура центрального аппарата включала 7 подразделений общей направленности (6 управлений и самостоятельный отдел), 3 управления по атомному надзору и 6 управлений по технологическому надзору (рис. 2).

Рис. 2. Организационная структура центрального аппарата Федеральной службы по экологическому, технологическому и атомному надзору
Действовавшая в 2015 г. схема размещения территориальных органов Федеральной службы по экологическому, технологическому и атомному, утвержденная распоряжением Правительства Российской Федерации от 5 октября 2012 г. № 1846-р и дополненная распоряжением Правительства Российской Федерации от 24 апреля 2014 года № 672-р, включала межрегиональные территориальные управления по надзору за ядерной и радиационной безопасностью, а также территориальные управления Федеральной службы по экологическому, технологическому и атомному надзору по технологическому и экологическому надзору межрегионального и регионального уровня.

Структура и местонахождение территориальных органов Федеральной службы по экологическому, технологическому и атомному надзору

Центральный федеральный округ

1. Центральное межрегиональное территориальное управление по надзору за ядерной и радиационной безопасностью Федеральной службы по экологическому, технологическому и атомному надзору, г. Москва.

2. Межрегиональное технологическое управление Федеральной службы по экологическому, технологическому и атомному надзору, г. Москва (Москва — город федерального значения, Чукотский автономный округ, г. Норильск и прилегающие к нему территории).

3. Центральное управление Федеральной службы по экологическому, технологическому и атомному надзору, г. Москва (Московская, Смоленская, Тверская, Калининградская, Владимирская, Ивановская, Костромская и Ярославская области).

4. Верхне-Донское управление Федеральной службы по экологическому, технологическому и атомному надзору, г. Воронеж (Белгородская, Воронежская, Курская, Липецкая и Тамбовская области).

5. Приокское управление Федеральной службы по экологическому, технологическому и атомному надзору, г. Тула (Брянская, Калужская, Орловская, Рязанская и Тульская области).

Северо-Западный федеральный округ

6. Северо-Европейское межрегиональное территориальное управление по надзору за ядерной и радиационной безопасностью Федеральной службы по экологическому, технологическому и атомному надзору, г. Санкт-Петербург.

7. Северо-Западное управление Федеральной службы по экологическому, технологическому и атомному надзору, г. Санкт-Петербург (г. Санкт-Петербург — город федерального значения, Республика Карелия, Ленинградская, Новгородская, Псковская, Мурманская, Архангельская и Вологодская области).

8. Печорское управление Федеральной службы по экологическому, технологическому и атомному надзору, г. Сыктывкар (Республика Коми, Ненецкий автономный округ).

Южный федеральный округ

9. Донское межрегиональное территориальное управление по надзору за ядерной и радиационной безопасностью Федеральной службы по экологическому, технологическому и атомному надзору, г. Нововоронеж Воронежской области.

10. Нижне-Волжское управление Федеральной службы по экологическому, технологическому и атомному надзору, г. Волгоград (Республика Калмыкия, Астраханская, Волгоградская, Саратовская и Пензенская области).
11. Северо-Кавказское управление Федеральной службы по экологическому, технологическому и атомному надзору, г. Краснодар (Краснодарский край, Республика Адыгея, Ростовская область).

Северо-Кавказский федеральный округ

Приволжский федеральный округ

13. Волжское межрегиональное территориальное управление по надзору за ядерной и радиационной безопасностью Федеральной службы по экологическому, технологическому и атомуому надзору, г. Балаково Саратовской области.
14. Волжско-Окское управление Федеральной службы по экологическому, технологическому и атомному надзору, г. Нижний Новгород (Нижегородская область, Республика Мордовия).
15. Западно-Уральское управление Федеральной службы по экологическому, технологическому и атомному надзору, г. Пермь (Пермский край, Удмуртская Республика, Республика Башкортостан, Кировская и Оренбургская области).
16. Средне-Поволжское управление Федеральной службы по экологическому, технологическому и атомному надзору, г. Самара (Самарская и Ульяновская области).
17. Приволжское управление Федеральной службы по экологическому, технологическому и атомному надзору, г. Казань (Республика Татарстан (Татарстан), Республика Марий Эл, Чувашская Республика — Чувашия).

Уральский федеральный округ

18. Уральское межрегиональное территориальное управление по надзору за ядерной и радиационной безопасностью Федеральной службы по экологическому, технологическому и атомному надзору, г. Екатеринбург.
19. Северо-Уральское управление Федеральной службы по экологическому, технологическому и атомному надзору, г. Тюмень (Тюменская область, Ханты-Мансийский автономный округ — Югра, Ямало-Ненецкий автономный округ).
20. Уральское управление Федеральной службы по экологическому, технологическому и атомному надзору, г. Екатеринбург (Курганская, Свердловская и Челябинская области).

Сибирский федеральный округ

21. Межрегиональное территориальное управление по надзору за ядерной и радиационной безопасностью Сибири и Дальнего Востока Федеральной службы по экологическому, технологическому и атомному надзору, г. Новосибирск (Сибирский и Дальневосточный федеральные округа).
22. Забайкальское управление Федеральной службы по экологическому, технологическому и атомному надзору, г. Чита (Забайкальский край, Республика Бурятия).
23. Енисейское управление Федеральной службы по экологическому, технологическому и атомному надзору, г. Красноярск (Красноярский край (без г. Норильска и прилегающих к нему территорий), Республика Тыва, Республика Хакасия, Иркутская область).
24. Сибирское управление Федеральной службы по экологическому, технологическому и атомному надзору, г. Кемерово (Алтайский край, Республика Алтай, Кемеровская, Новосибирская, Омская и Томская области).

Дальневосточный федеральный округ

25. Дальневосточное управление Федеральной службы по экологическому, технологическому и атомному надзору, г. Хабаровск (Приморский, Хабаровский, Камчатский край, Амурская область, Еврейская автономная область, Северные Курильские острова (Парамушир, Шумшу) Сахалинской области).

26. Ленское управление Федеральной службы по экологическому, технологическому и атомному надзору, г. Якутск (Республика Саха (Якутия)).

27. Сахалинское управление Федеральной службы по экологическому, технологическому и атомному надзору, г. Южно-Сахалинск (Сахалинская область).

28. Северо-Восточное управление Федеральной службы по экологическому, технологическому и атомному надзору, г. Магадан (Магаданская область).

Крымский федеральный округ

29. Межрегиональное управление Федеральной службы по экологическому, технологическому и атомному надзору по Республике Крым и г. Севастополь, г. Симферополь (Республика Крым и город федерального значения Севастополь).

Перечень организаций, подведомственных Федеральной службе по экологическому, технологическому и атомному надзору

Федеральное государственное унитарное предприятие

1. ФГУП «ВО «Безопасность», г. Москва.

Федеральные бюджетные учреждения

1. Научно-технический центр по ядерной и радиационной безопасности, г. Москва.

2. Научно-технический центр «Энергобезопасность», г. Москва.

3. Федеральное бюджетное учреждение «Учебно-методический кабинет», г. Москва.
II. РЕГУЛИРУЮЩАЯ ДЕЯТЕЛЬНОСТЬ

2.1. Нормативно-правовое регулирование

Законодательные и нормативные правовые акты Российской Федерации, принятые в 2015 г. в установленной сфере деятельности Ростехнадзора по направлениям деятельности и видам надзора

В 2015 г. в сфере деятельности Ростехнадзора приняты следующие федеральные законы:

от 6 апреля 2015 г. № 82-ФЗ «О внесении изменений в отдельные законодательные акты Российской Федерации в части отмены обязательности печати хозяйственных обществ»;
от 29 июня 2015 г. № 162-ФЗ «О стандартизации в Российской Федерации»;
от 13 июля 2015 г. № 233-ФЗ «О внесении изменений в Федеральный закон «Об общих принципах организации законодательных (представительных) и исполнительных органов государственной власти субъектов Российской Федерации» и отдельные законодательные акты Российской Федерации и признании утратившими силу отдельных положений законодательных актов Российской Федерации»;
от 13 июля 2015 г. № 246-ФЗ «О внесении изменений в Федеральный закон «О защите прав юридических лиц и индивидуальных предпринимателей при осуществлении государственного контроля (надзора) и муниципального контроля»;
от 13 июля 2015 г. № 263-ФЗ «О внесении изменений в законодательные акты Российской Федерации в части отмены ограничений на использование электронных документов при взаимодействии физических и юридических лиц с органами государственной власти и органами местного самоуправления»;
от 3 ноября 2015 г. № 306-ФЗ «О внесении изменений в Федеральный закон «О защите прав юридических лиц и индивидуальных предпринимателей при осуществлении государственного контроля (надзора) и муниципального контроля»;
от 3 ноября 2015 г. № 307-ФЗ «О внесении изменений в отдельные законодательные акты Российской Федерации в связи с укреплением платежной дисциплины потребителей энергетических ресурсов».

В 2015 г. приняты следующие постановления Правительства Российской Федерации:

от 17 января 2015 г. № 19 «О внесении изменений в некоторые акты Правительства Российской Федерации»;
от 14 февраля 2015 г. № 130 «О внесении изменений в федеральную целевую программу «Пожарная безопасность в Российской Федерации на период до 2017 года»;
от 16 февраля 2015 г. № 132 «О внесении изменений в некоторые акты Правительства Российской Федерации по вопросам утверждения инвестиционных программ субъектов электроэнергетики и контроля за их реализацией».
от 18 февраля 2015 г. № 133 «О предоставлении и распределении субвенций из федерального бюджета бюджету г. Севастополя на финансовое обеспечение осуществления части полномочий Российской Федерации в сфере государственного контроля (надзора) в области промышленной безопасности, электроэнергетики и безопасности гидротехнических сооружений, переданных Правительству Севастополя»;
от 19 февраля 2015 г. № 139 «О внесении изменений в некоторые акты Правительства Российской Федерации по вопросам электроэнергетики»;
от 25 марта 2015 г. № 268 «О внесении изменений в Положение о признании помещения жилым помещением, жилого помещения непригодным для проживания и многоквартирного дома аварийным и подлежащим сносу или реконструкции»;
от 27 марта 2015 г. № 284 «О предоставлении и распределении субвенций из федерального бюджета бюджету Республики Крым на финансовое обеспечение осуществления части полномочий Российской Федерации в сфере государственного контроля (надзора) в области промышленной безопасности, электроэнергетики и безопасности гидротехнических сооружений, переданных Совету министров Республики Крым»;
от 10 апреля 2015 г. № 340 «О порядке утверждения перечней отдельных видов работ, в целях выполнения которых на объектах, отнесенных в соответствии с законодательством Российской Федерации к опасным производственным объектам I и II классов опасности, не допускается направление работников частными агентствами занятости для работы у физических лиц или юридических лиц, не являющихся работодателями данных работников, по договору о предоставлении труда работников (персонала)»;
от 28 мая 2015 г. № 509 «Об аттестации экспертов в области промышленной безопасности»;
от 29 июля 2015 г. № 770 «Об утверждении Правил подготовки и оформления документов, удостоверяющих уточненные границы горного отвода»;
от 6 августа 2015 г. № 814 «Об утверждении Правил подготовки, рассмотрения и согласования планов и схем развития горных работ по видам полезных ископаемых»;
от 6 октября 2015 г. № 1067 «О некоторых вопросах лицензирования деятельности по проведению экспертизы промышленной безопасности»;
от 14 октября 2015 г. № 1102 «О лицензировании деятельности, связанной с обращением взрывчатых материалов промышленного назначения»;
от 26 ноября 2015 г. № 1268 «Об утверждении Правил подачи и рассмотрения заявления об исключении проверки в отношении юридического лица, индивидуального предпринимателя из ежегодного плана проведения плановых проверок и о внесении изменений в постановление Правительства Российской Федерации от 30 июня 2010 г. № 489»;
от 16 декабря 2015 г. № 1376 «О внесении изменений в некоторые акты Правительства Российской Федерации»;
от 17 декабря 2015 г. № 1378 «О внесении изменений в некоторые акты Правительства Российской Федерации и признании утратившим силу подпункта 5.5.3 Положения о Федеральном агентстве водных ресурсов»;
от 24 декабря 2015 г. № 1421 «О внесении изменений в отдельные акты Правительства Российской Федерации по вопросам исполнения государственных функций Федеральной службы по экологическому, технологическому и атомному надзору».
В 2015 г. Ростехнадзор принимал участие в согласовании законопроектов и проектов нормативных правовых актов Российской Федерации:
проекта федерального закона «О внесении изменений в некоторые законодательные акты Российской Федерации в целях обеспечения безопасности полетов воздушных судов»;
проекта федерального закона «О внесении изменений в статью 46 Федерального закона от 10 января 2002 года № 7-ФЗ «Об охране окружающей среды» в части наделения Правительства Российской Федерации полномочиями по установлению правил организации мероприятий по предупреждению и ликвидации разливов нефти и нефтепродуктов на территории Российской Федерации, за исключением континентального шельфа, внутренних морских вод и территориального моря Российской Федерации»;
проекта федерального закона «О метрополитенах и других видах внеуличного транспорта и о внесении изменений в отдельные законодательные акты Российской Федерации»;
проекта федерального закона «О внесении изменений в отдельные законодательные акты Российской Федерации по вопросам пожарной безопасности»;
проекта федерального закона «О внесении изменений в Федеральный закон «О саморегулируемых организациях» и в отдельные законодательные акты Российской Федерации»;
проекта федерального закона № 577574-6 «О внесении изменений в отдельные законодательные акты Российской Федерации в целях регулирования безопасности в области использования атомной энергии»;
проекта федерального закона «О внесении изменений в статью 481 Градостроительного кодекса Российской Федерации» (в части уточнения объектов капитального строительства, относящихся к особо опасным и технически сложным объектам);
проекта федерального закона «О внесении изменений в Градостроительный кодекс Российской Федерации» (в части установления возможности выполнения отдельных видов подготовительных работ до получения разрешения на строительство);
проекта постановления Правительства Российской Федерации «О создании и поддержании в постоянной готовности локальных систем оповещения»;
проекта постановления Правительства Российской Федерации «Об утверждении методики комплексного определения показателей технико-экономического состояния объектов электроэнергетики, в том числе показателей физического износа и энергетической эффективности объектов электросетевого хозяйства, и порядка осуществления мониторинга таких показателей».

В рамках совершенствования системы государственного регулирования в области промышленной безопасности Ростехнадзором в 2015 г. была осуществлена переработка следующих административных регламентов исполнения Ростехнадзором государственных функций (предоставления государственных услуг):

Административный регламент по предоставлению Федеральной службой по экологическому, технологическому и атомному надзору государственной услуги по приёму и учету уведомлений о начале осуществления юридическими лицами и индивидуальными предпринимателями отдельных видов деятельности по эксплуатации взрывопожароопасных и химически опасных производственных объектов IV класса опасности, утвержденный приказом Ростехнадзора от 12 мая 2015 г. № 186 (зарегистрирован Минюстом России 17 июля 2015 г., регистрационный № 38078);

Административный регламент Федеральной службы по экологическому, технологическому и атомному надзору по предоставлению государственной услуги по лицензированию деятельности по эксплуатации взрывопожароопасных и химически опасных производственных объектов I, II и III классов опасности, утвержден-
ный приказом Ростехнадзора от 11 августа 2015 г. № 305 (зарегистрирован Минюс-
tом России 8 октября 2015 г., регистрационный № 39229).

В соответствии с Перечнем государственных услуг и государственных функций
федеральных органов исполнительной власти, для которых должны быть разработа-
ны административные регламенты и информация о которых должна быть размещена
в Федеральном реестре государственных услуг (функций), одобренным Протоколом
заседания Правительственной комиссии по проведению административной рефор-
мы от 29 сентября 2010 г. № 107, были утверждены в 2015 г. следующие документы:

Административный регламент исполнения Федеральной службой по экологи-
ческому, технологическому и атомному надзору государственной функции по осу-
ществлению федерального государственного энергетического надзора, утвержден-
ный приказом Ростехнадзора от 30 января 2015 г. № 38 (зарегистрирован Минюстом
России 27 февраля 2015 г., регистрационный № 36293);

Административный регламент Федеральной службы по экологическому, техно-
логическому и атомному надзору по предоставлению государственной услуги по предо-
ставлению сведений из государственного реестра саморегулируемых организа-
ций в области инженерных изысканий, архитектурно-строительного проектиро-
вания, строительства, реконструкции, капитального ремонта объектов капитально-
го строительства, утвержденный приказом Ростехнадзора от 21 июля 2015 г. № 281
(зарегистрирован Минюстом России 17 августа 2015 г., регистрационный № 38556);

Административный регламент Федеральной службы по экологическому, техноло-
гическому и атомному надзору по предоставлению государственной услуги по ут-
верждению деклараций безопасности поднадзорных гидротехнических сооружений, находящихся в
эксплуатации, утвержденный приказом Ростехнадзора от 12 августа 2015 г. № 312 (заре-
гистрирован Минюстом России 26 января 2016 г., регистрационный № 40783);

Административный регламент Федеральной службы по экологическому, техно-
логическому и атомному надзору по предоставлению государственной услуги по ут-
верждению деклараций безопасности поднадзорных гидротехнических сооружений,
находящихся в эксплуатации, утвержденный приказом Ростехнадзора от 2 октябрь
2015 г. № 394 (направлен на государственную регистрацию в Минюст России);

Административный регламент Федеральной службы по экологическому, техноло-
гическому и атомному надзору по предоставлению государственной услуги по согласова-
нию правил эксплуатации гидротехнических сооружений (за исключением судоходных и пор-
товых гидротехнических сооружений), утвержденный приказом Ростехнадзора от 3 ноя-
бря 2015 г. № 447 (направлен на государственную регистрацию в Минюст России);

Административный регламент Федеральной службы по экологическому, техноло-
гическому и атомному надзору по предоставлению государственной услуги по опре-
делению экспертных центров, проводящих государственную экспертизу деклараций
безопасности гидротехнических сооружений (за исключением судоходных и порто-
вых гидротехнических сооружений), утвержденный приказом Ростехнадзора от 3 ноя-
бря 2015 г. № 448 (направлен на государственную регистрацию в Минюст России);

Административный регламент по предоставлению Федеральной службой по эко-
логическому, технологическому и атомному надзору государственной услуги по ат-
тестации экспертов в области промышленной безопасности, утвержденный прика-
зом Ростехнадзора от 26 октября 2015 г. № 430 (направлен на государственную ре-
гистрацию в Минюст России).

В 2015 г. Ростехнадзор принимал участие в разработке и согласовании предложе-
ний по корректировке государственной программы Российской Федерации «Защита
населения и территорий от чрезвычайных ситуаций, обеспечение пожарной безопасности и безопасности людей на водных объектах», утвержденной Постановлением Правительства Российской Федерации от 15 апреля 2014 г. № 300, и государственной программы Российской Федерации «Развитие атомного энергопромышленного комплекса», утвержденной постановлением Правительства Российской Федерации от 2 июня 2014 г. № 506-12.

Разработка первоочередных технических регламентов Таможенного союза завершена. В настоящее время федеральными органами исполнительной власти ведется работа по внесению изменений в принятые технические регламенты.

В соответствии с постановлением Правительства Российской Федерации от 13 мая 2013 г. № 407 «Об уполномоченных органах Российской Федерации по обеспечению государственного контроля (надзора) за соблюдением требований технических регламентов Таможенного союза» Ростехнадзором в рамках своей компетенции осуществляется государственный контроль за соблюдением требований технических регламентов Таможенного союза «О безопасности машин и оборудования», «Безопасность лифтов», «О безопасности оборудования для работы во взрывоопасных средах», «О безопасности аппаратов, работающих на газообразном топливе», «О безопасности оборудования, работающего под избыточным давлением».

Также в соответствии с постановлением Правительства Российской Федерации от 23 декабря 2014 г. № 1447 Ростехнадзор осуществляет в рамках своей компетенции государственный контроль (надзор) за соблюдением требований технического регламента Таможенного союза «О безопасности взрывчатых веществ и изделий на их основе».

Нормативные правовые акты Ростехнадзора, направленные на обеспечение реализации технических регламентов Таможенного союза, были изданы в 2014 г.

В соответствии с Планом нормотворческой деятельности Федеральной службы по экологическому, технологическому и атомному надзору на 2015 г., утвержденным приказом Ростехнадзора от 18 февраля 2015 г. № 54, Ростехнадзором разработаны и внесены в установленном порядке в Правительство Российской Федерации:

4 проекта федеральных законов,
4 проекта постановления Правительства Российской Федерации; разработаны и утверждены 15 приказов (в том числе федеральные нормы и правила — 6, административный регламент — 1).

План нормотворческой деятельности Федеральной службы по экологическому, технологическому и атомному надзору на 2015 г. выполнен на 100 %.

В 2015 г. зарегистрированы Минюстом России следующие нормативные правовые акты:

1. Приказ Ростехнадзора от 23 июня 2014 г. № 260 «Об утверждении Административного регламента Федеральной службы по экологическому, технологическому и атомному надзору по предоставлению государственной услуги по ведению реестра заключений экспертизы промышленной безопасности» (зарегистрирован Минюстом России 15 января 2015 г., регистрационный № 35553).

2. Приказ Ростехнадзора от 15 декабря 2014 г. № 569 «О внесении изменений в Административный регламент по исполнению Федеральной службой по экологическому, технологическому и атомному надзору государственной функции по осуществлению государственного контроля и надзора за проведением обязательного энергетического обследования в установленный срок, утвержденный приказом
Федеральной службы по экологическому, технологическому и атомному надзору от 22 ноября 2011 г. № 653» (зарегистрирован Минюстом России 23 января 2015 г., регистрационный № 35662).
3. Приказ Ростехнадзора от 27 ноября 2014 г. № 529 «О внесении изменений в Административный регламент по исполнению Федеральной службой по экологическому, технологическому и атомному надзору государственной функции по федеральному государственному надзору в области использования атомной энергии, утвержденный приказом Федеральной службы по экологическому, технологическому и атомному надзору от 7 июня 2013 г. № 248» (зарегистрирован Минюстом России 26 января 2015 г., регистрационный № 35728).
4. Приказ Ростехнадзора от 4 августа 2014 г. № 345 «Об утверждении Административного регламента Федеральной службы по экологическому, технологическому и атомному надзору по предоставлению государственной услуги по выдаче разрешений на постоянное применение взрывчатых веществ и изделий на их основе» (зарегистрирован Минюстом России 28 января 2015 г., регистрационный № 35761).
5. Приказ Ростехнадзора от 11 декабря 2014 г. № 559 «Об утверждении Федеральных норм и правил в области промышленной безопасности «Правила безопасности автогазозаправочных станций газомоторного топлива» (зарегистрирован Минюстом России 29 января 2015 г., регистрационный № 35780).
7. Приказ Ростехнадзора от 14 октября 2014 г. № 463 «Об утверждении Федеральных норм и правил в области промышленной безопасности «Инструкция по ведению огневых работ в горных выработках, надшахтных зданиях шахт и углеобогатительных фабриках» (зарегистрирован Минюстом России 9 февраля 2015 г., регистрационный № 35921).
8. Приказ Ростехнадзора от 28 ноября 2014 г. № 530 «Об утверждении Федеральных норм и правил в области промышленной безопасности «Инструкция по изоляции неиспользуемых горных выработок и выработанных пространств в угольных шахтах» (зарегистрирован Минюстом России 9 февраля 2015 г., регистрационный № 35926).
11. Приказ Ростехнадзора от 18 ноября 2014 г. № 519 «Об утверждении формы извещения об аварии на опасном объекте и формы акта технического расследования причин аварий на опасных объектах» (зарегистрирован Минюстом России 20 февраля 2015 г., регистрационный № 36185).
12. Приказ Ростехнадзора от 19 декабря 2014 г. № 582 «О внесении изменений в отдельные акты Федеральной службы по экологическому, технологическому и атомному надзору по вопросам безопасности гидротехнических сооружений» (зарегистрирован Минюстом России 20 февраля 2015 г., регистрационный № 36144).
13. Приказ Ростехнадзора от 12 января 2015 г. № 1 «О внесении изменений в Федеральные нормы и правила в области промышленной безопасности «Прави-
ла безопасности в нефтяной и газовой промышленности», утвержденные приказом Федеральной службы по экологическому, технологическому и атомному надзору
от 12 марта 2013 г. № 101» (зарегистрирован Минюстом России 20 февраля 2015 г.,
регистрационный № 36191).

14. Приказ Ростехнадзора от 25 декабря 2014 г. № 609 «О внесении изменений в
Порядок проведения технического расследования причин аварий, инцидентов и слу-
чаев утраты взрывчатых материалов промышленного назначения на объектах, под-
надзорных Федеральной службе по экологическому, технологическому и атомному
nadзору, утвержденный приказом Федеральной службы по экологическому, techno-
логическому и атомному надзору от 19 августа 2011 г. № 480» (зарегистрирован Мин-
юстом России 26 февраля 2015 г., регистрационный № 36214).

15. Приказ Ростехнадзора от 20 января 2015 г. № 10 «Об утверждении перечня
персональных данных, обрабатываемых в Федеральной службе по экологическому,
technологическому и атомному надзору в связи с реализацией трудовых отношений,
a также типовой формы согласия на обработку персональных данных федеральных
gосударственных гражданских служащих Федеральной службы по экологическому,
technологическому и атомному надзору, и иных субъектов персональных данных» (за-
регистрирован Минюстом России 26 февраля 2015 г., регистрационный № 36225) и
другие документы.

Всего в 2015 г. в Минюсте России зарегистрировано 68 нормативных правовых
актов Ростехнадзора.

Состояние нормативного правового регулирования в области использования
атомной энергии. Разработка и введение в действие федеральных норм и правил
в области использования атомной энергии

В целях реализации положений Федерального закона от 21 ноября 1995 г. № 170-ФЗ
«Об использовании атомной энергии» в отчетном периоде проводилась работа по
совершенствованию системы действующих и разработке новых проектов федераль-
ных норм и правил в области использования атомной энергии (далее — ФНП).

В соответствии со статьей 6 Федерального закона от 21 ноября 1995 г. № 170-ФЗ
«Об использовании атомной энергии» ФНП являются нормативными правовыми
актами, устанавливающими требования к безопасному использованию атом-
ной энергии, включая требования безопасности объектов использования атомной
энергии, требования безопасности деятельности в области использования атомной
энергии, в том числе цели, принципы и критерии безопасности, соблюдение кото-
рых обязательно при осуществлении деятельности в области использования атом-
ной энергии.

ФНП в области использования атомной энергии составляют основу нормативной
базы для регулирования безопасности объектов использования атомной энергии.

Действующая система ФНП в области использования атомной энергии включа-
ет 91 документ, который имеет следующие области распространения:
на все объекты использования атомной энергии — 22;
на атомные станции — 24;
на исследовательские ядерные установки — 11;
на объекты ядерного топливного цикла — 15;
на ядерные установки судов — 7;
на радиационные источники — 4;
на обращение с радиоактивными отходами — 8.

Практика применения ФНП показывает в целом эффективность установленных в них требований, что в первую очередь подтверждается успешным и безопасным функционированием атомного энергопромышленного комплекса.

Актуализация системы ФНП проводится регулярно в целях обеспечения полноты требований к безопасности объектов использования атомной энергии и видов деятельности в этой области, путем разработки новых документов, а также внесения изменений в действующие документы.

Всего в 2015 г. находилось в разработке 46 проектов ФНП, из них в 2015 г. приказами Ростехнадзора утверждены 11 ФНП, также Минюстом России в 2015 г. зарегистрированы 3 ФНП, утвержденных в конце 2014 г.:

1. «Общие положения обеспечения безопасности атомных станций» (приказ Ростехнадзора от 7 декабря 2015 г. № 522, направлен на государственную регистрацию в Минюст России письмом № 00-02-04/1022 от 24.12.2015).
2. «Правила устройства и безопасной эксплуатации оборудования и трубопроводов атомных энергетических установок» (приказ Ростехнадзора от 7 декабря 2015 г. № 521, направлен на государственную регистрацию в Минюст России письмом № 00-02-04/1026 от 25.12.2015).
3. «Правила контроля основного металла, сварных соединений и наплавленных поверхностей при эксплуатации оборудования, трубопроводов и других элементов атомных станций» (приказ Ростехнадзора от 7 декабря 2015 г. № 502, направлен на государственную регистрацию в Минюст России письмом № 00-03-04/1314 от 10.12.2015).
5. «Требования к системам физической защиты ядерных материалов, ядерных установок и пунктов хранения ядерных материалов» (приказ Ростехнадзора от 8 сентября 2015 г. № 343, зарегистрирован Минюстом России 23 ноября 2015 г., регистрационный № 39808).

В журнале «Ядерная и радиационная безопасность» опубликованы 7 проектов ФНП.

Состояние нормативного правового регулирования в области промышленной безопасности, безопасности электрических и тепловых установок и сетей, безопасности гидротехнических сооружений на объектах промышленности и энергетики, в сфере деятельности, связанной с обращением взрывчатых материалов промышленного назначения.

На основании пункта 1 Положения о Федеральной службе по экологическому, технологическому и атомному надзору, утвержденного постановлением Правительства Российской Федерации от 30 июля 2004 г. № 401, Ростехнадзор является федеральным органом исполнительной власти, осуществляющим функции по выработке и реализации государственной политики и нормативно-правовому регулированию в установленной сфере деятельности, а также в сфере технологического и атомного надзора.

При реализации возложенных функций Ростехнадзором в 2015 г. были подготовлены и внесены в Правительство Российской Федерации 4 проекта федеральных законов.

Также Ростехнадзор принимал участие в разработке проектов двух федеральных законов.

Разработаны 12 проектов постановлений Правительства Российской Федерации (11 утверждены в 2015 г.), 15 проектов приказов Федеральной службы по экологическому, технологическому и атомному надзору (все утверждены Ростехнадзором в 2015 г.), 9 проектов административных регламентов Федеральной службы по экологическому, технологическому и атомному надзору (все утверждены Ростехнадзором в 2015 г.).

Антикоррупционная экспертиза нормативных правовых актов и проектов нормативных правовых актов

В 2015 г. центральным аппаратом Ростехнадзора была проведена антикоррупционная экспертиза 21 нормативного правового акта, а также 61 проекта нормативных правовых актов Ростехнадзора. В проектах нормативных правовых актов были выявлены 3 коррупционных фактора, которые были полностью исключены при дальнейшей работе.
Состояние договорной работы в Ростехнадзоре

В течение 2015 г. специалистами Ростехнадзора в рамках договорной работы проведена правовая экспертиза 242 проектов договоров и государственных контрактов на оказание работ и услуг, поставки товаров, выполнения научно-исследовательских, опытно-конструкторских работ и иных видов гражданско-правовых договоров.

Для субъектов малого предпринимательства, социально ориентированных, некоммерческих организаций было проведено 28 конкурентных способов определения поставщика (подрядчика, исполнителя), по итогам проведенных процедур заключено 27 государственных контрактов.

Претензионно-исковая работа в сфере деятельности Ростехнадзора

В течение 2015 г. в производстве центрального аппарата Ростехнадзора находилось 93 дела, из которых по 64 Ростехнадзор выступал в качестве стороны по делу, по 29 в качестве третьего лица.

Из 64 дел, в которых Ростехнадзор выступал в качестве стороны по делу, рассмотрено судами 50, по 43 делам вынесены положительные решения, по 7 — отрицательные.

Рассматривая итоги работы по данному направлению, необходимо отметить сформированную положительную судебную практику по вопросу обязательного размещения средств компенсационного фонда саморегулируемых организаций в области инженерных изысканий, архитектурно-строительного проектирования, строительства, реконструкции и капитального ремонта объектов капитального строительства в кредитных учреждениях без привлечения третьих лиц.

Специалистами территориальных органов Ростехнадзора в 2015 г. принято участие в 12 944 судебных делах, из них:

4684 дела находились в производстве арбитражных судов, рассмотрены по существу 3343 дела:
по 2573 вынесены положительные решения, по 770 — отрицательные.
8260 дел находились в производстве судов общей юрисдикции, рассмотрены по существу 6916 дел:
по 6304 вынесены положительные решения, по 612 — отрицательные.

Деятельность по пересмотру постановлений и решений по делам об административных правонарушениях

Централизным аппаратом Ростехнадзора рассмотрено 25 жалоб на постановления по делам об административных правонарушениях, вынесенные должностными лицами территориальных органов. 5 жалоб поданы должностными лицами поднадзорных юридических лиц, 20 — юридическими лицами.

По результатам рассмотрения жалоб приняты следующие решения: по 2 делам постановления отменены, по 13 делам жалобы оставлены без удовлетворения (рассмотрение жалоб прекращено), по 10 делам жалобы возвращены заявителям без рассмотрения по существу.
2.2. Контроль и надзор, лицензионная и разрешительная деятельность

2.2.1. Атомные станции

В течение 2015 г. Федеральной службой по экологическому, технологическому и атомному надзору (Ростехнадзор) осуществлялось регулирование ядерной и радиационной безопасности на 14 атомных станциях (Балаковской АЭС, Балтийской АЭС, Белоозерской АЭС, Билибинской АЭС, Калининской АЭС, Колымской АЭС, Курской АЭС, Ленинградской АЭС, Нижегородской АЭС, Нововоронежской АЭС, Ростовской АЭС, Смоленской АЭС, Тверской АЭС, Центральной АЭС), на которых эксплуатируются 34 энергоблока, 2 энергоблока находятся в стадии подготовки к выводу из эксплуатации (1, 2 блоки Белоозерской АЭС), 2 энергоблока находятся в стадии вывода из эксплуатации (1, 2 блоки Нововоронежской АЭС), один энергоблок находится на этапе энергетического пуска (4 блок Белоозерской АЭС), 8 энергоблоков находятся в стадии сооружения (блок Нововоронежской АЭС-2 вводится в эксплуатацию; 1, 2 блоки Ленинградской АЭС-2; 2 блок Нововоронежской АЭС-2; 4 блок Ростовской АЭС; 5 блок Курской АЭС; 5 блок Балаковской АЭС; 1 блок Балтийской АЭС) и для 13 энергоблоков ведется деятельность по их размещению (3, 4 блоки Ленинградской АЭС-2; 2 блок Балтийской АЭС; 1, 2 блоки Центральной АЭС; 1, 2 блоки Нижегородской АЭС; 1, 2 блоки Тверской АЭС; 1, 2 блоки Курской АЭС-2; опытно-демонстрационный энергоблок с реактором на быстрых нейтронах со свинцовым теплоносителем (БРЕСТ-ОД-300); опытно-промышленный энергоблок с реакторной установкой на быстрых нейтронах со свинцово-висмутовым теплоносителем (СВБР-100).

Распределение по типам реакторов на АЭС приведено в табл. 1.

<table>
<thead>
<tr>
<th>Распределение по типам реакторов на АЭС</th>
</tr>
</thead>
<tbody>
<tr>
<td>В работе</td>
</tr>
<tr>
<td>Реакторы с водой под давлением</td>
</tr>
<tr>
<td>Канальные кипящие реакторы</td>
</tr>
<tr>
<td>Реакторы на быстрых нейтронах с натриевым теплоносителем</td>
</tr>
<tr>
<td>Остановлены для подготовки к выводу из эксплуатации</td>
</tr>
<tr>
<td>Канальные кипящие реакторы</td>
</tr>
<tr>
<td>В стадии вывода из эксплуатации</td>
</tr>
<tr>
<td>Реакторы с водой под давлением</td>
</tr>
<tr>
<td>Реакторы на быстрых нейтронах с натриевым теплоносителем</td>
</tr>
<tr>
<td>Реакторы с водой под давлением</td>
</tr>
<tr>
<td>В стадии сооружения</td>
</tr>
<tr>
<td>Реакторы с водой под давлением</td>
</tr>
<tr>
<td>Канальные кипящие реакторы</td>
</tr>
<tr>
<td>Ведется деятельность по размещению</td>
</tr>
<tr>
<td>Реакторы с водой под давлением</td>
</tr>
<tr>
<td>Реакторы на быстрых нейтронах со свинцовым теплоносителем</td>
</tr>
<tr>
<td>Реакторы на быстрых нейтронах со свинцово-висмутовым теплоносителем</td>
</tr>
</tbody>
</table>

© Оформление. ЗАО НТЦ ПИ, 2016
Лицензионная деятельность

Количество действующих лицензий Ростехнадзора на эксплуатацию блоков атомных станций и других объектов использования атомной энергии на территории атомных станций равно 44.

В 2015 г. центральным аппаратом Ростехнадзора было выдано 42 лицензии (в 2014 г. — 32 лицензии), из них 11 лицензий выдано эксплуатирующей организации АО «Концерн Росэнергоатом», одна лицензия — эксплуатирующей организации ОАО «АКМЭ-инжиниринг», одна лицензия — эксплуатирующей организации АО «Сибирский химический комбинат» и 28 лицензий — организациям, осуществляющим проектирование, конструирование, изготовление оборудования энергоблоков атомных станций, экспертизу безопасности и т.д. Кроме того, было оформлено 233 изменения условий действия лицензий (в 2014 г. — 160) и в 22 случаях было отказано в оформлении изменений в условиях действия лицензий на основании результатов проведенных экспертиз, которые содержали выводы о том, что безопасность объекта использования атомной энергии и (или) лицензируемого вида деятельности не обеспечена и (или) что документы, представленные соискателем лицензии, не соответствуют законодательству Российской Федерации, требованиям федеральных норм и правил в области использования атомной энергии.

Данные о количестве лицензий, выданных центральным аппаратом на отдельные виды деятельности в 2015 г. и в 2014 г., представлены в табл. 2.

<table>
<thead>
<tr>
<th>Вид деятельности</th>
<th>Количество лицензий</th>
</tr>
</thead>
<tbody>
<tr>
<td>Размещение энергоблоков АС</td>
<td>4 (0)</td>
</tr>
<tr>
<td>Сооружение энергоблоков АС</td>
<td>1 (0)</td>
</tr>
<tr>
<td>Эксплуатация энергоблоков АС</td>
<td>4 (3)</td>
</tr>
<tr>
<td>Сооружение хранилищ РАО</td>
<td>2 (1)</td>
</tr>
<tr>
<td>Обращение с РВ</td>
<td>1 (0)</td>
</tr>
<tr>
<td>Эксплуатация хранилищ ядерного топлива</td>
<td>3 (0)</td>
</tr>
<tr>
<td>Проектирование и конструирование энергоблоков АС, радиационных источников, пунктов хранения ЯМ и РВ, хранилищ радиоактивных отходов</td>
<td>11 (9)</td>
</tr>
<tr>
<td>Конструирование оборудования для АС</td>
<td>2 (4)</td>
</tr>
<tr>
<td>Изготовление оборудования для АС</td>
<td>4 (5)</td>
</tr>
<tr>
<td>Проведение экспертизы</td>
<td>10 (10)</td>
</tr>
</tbody>
</table>

Итого: 42 (32)

Примечание. Здесь и далее в скобках указаны данные за 2014 год.

Информация о количестве лицензий, выданных межрегиональными территориальными управлениями по надзору за ядерной и радиационной безопасностью (МТУ ЯРБ) организациям, выполняющим работы и предоставляющим услуги атомным станциям, приведена в табл. 3.
Данные о количестве лицензий, выданных в 2015 г. межрегиональными территориальными управлениями по надзору за ядерной и радиационной безопасностью (МТУ ЯРБ) организациям, выполняющим работы и предоставляющим услуги атомным станциям

<table>
<thead>
<tr>
<th>Показатель/МТУ ЯРБ</th>
<th>ВМТУ</th>
<th>ДМТУ</th>
<th>СЕМТУ</th>
<th>УМТУ</th>
<th>ЦМТУ</th>
<th>МТУ СД</th>
<th>Всего</th>
</tr>
</thead>
<tbody>
<tr>
<td>Выдано лицензий на право выполнения работ и предоставления услуг атомным станциям</td>
<td>94 (98)</td>
<td>100 (82)</td>
<td>149 (182)</td>
<td>81 (67)</td>
<td>356 (439)</td>
<td>19 (29)</td>
<td>799 (897)</td>
</tr>
</tbody>
</table>

В соответствии с Административным регламентом по предоставлению Федеральной службой по экологическому, технологическому и атомному надзору государственной услуги по выдаче разрешений на право ведения работ в области использования атомной энергии работникам объектов использования атомной энергии Ростехнадзор осуществлял выдачу разрешений на право ведения работ в области использования атомной энергии работникам (персоналу) атомных станций.

За отчетный период выданы:
- центральным аппаратом Ростехнадзора — 36 (64) разрешений руководящим работникам атомных станций;
- МТУ ЯРБ — 362 (466) разрешения работникам (оперативному персоналу) атомных станций.

Надзорная деятельность

В 2015 г. центральным аппаратом Ростехнадзора с привлечением инспекторов МТУ ЯРБ организованы и проведены 2 плановые комплексные инспекции Кольской и Билибинской атомных станций.

По результатам инспекций выявлено 8 нарушений требований федеральных норм и правил в области использования атомной энергии, выдано 2 предписания об их устранении. При этом инспекторами МТУ по надзору за ЯРБ наложено штрафов на должностные лица атомных станций на общую сумму 80 тыс. руб.

MTU ЯРБ в 2015 г. проведено 3628 (3810) целевых инспекций и мероприятий по контролю, проведенных в рамках осуществления постоянного надзора. Выявлено 551 (653) нарушение. По результатам проведенных проверок наложено 83 (97) штрафа на сумму 2500 (3362) тыс. руб.

Отмечается низкая укомплектованность отделов инспекций на атомных станциях инспекторским составом. Так, в целом укомплектованность МТУ ЯРБ составляет 80 % штатной численности, при этом укомплектованность отделов инспекций на Билибинской, Курской, Ленинградской, Смоленской, Калининской АЭС в 2015 г. составляла 40–60 %.

Показатели деятельности МТУ ЯРБ в 2015 г. приведены в табл. 4.
Показатели деятельности МТУ ЯРБ в 2015 г.

<table>
<thead>
<tr>
<th>Показатель/МТУ ЯРБ</th>
<th>ВМТУ</th>
<th>ДМТУ</th>
<th>СЕМТУ</th>
<th>УМТУ</th>
<th>ЦМТУ</th>
<th>МТУ СД</th>
<th>Итого</th>
</tr>
</thead>
<tbody>
<tr>
<td>Количество целевых инспекций и мероприятий по контролю</td>
<td>626 (840)</td>
<td>1209 (1058)</td>
<td>1393 (1512)</td>
<td>74 (70)</td>
<td>322 (321)</td>
<td>4 (9)</td>
<td>3628 (3810)</td>
</tr>
<tr>
<td>Количество выявленных нарушений</td>
<td>22 (49)</td>
<td>217 (251)</td>
<td>64 (74)</td>
<td>18 (34)</td>
<td>230 (245)</td>
<td>0</td>
<td>551 (653)</td>
</tr>
<tr>
<td>Количество административных наложенных наказаний</td>
<td>8 (9)</td>
<td>44 (47)</td>
<td>21 (29)</td>
<td>8 (10)</td>
<td>2 (2)</td>
<td>0</td>
<td>83 (97)</td>
</tr>
<tr>
<td>Сумма наложенных штрафов (тыс. руб.)</td>
<td>180 (195)</td>
<td>1180 (1940)</td>
<td>920 (960)</td>
<td>180 (207)</td>
<td>40 (60)</td>
<td>0</td>
<td>2500 (3362)</td>
</tr>
</tbody>
</table>

Основной объем проверок (более 3000) был выполнен отделами инспекций МТУ ЯРБ в виде мероприятий по контролю в рамках осуществления постоянного государственного надзора на энергоблоках атомных станций.

Из всего количества выявленных нарушений:

- 540 составляют нарушения требований федеральных норм и правил в области использования атомной энергии и условий действия лицензий;

- 11 — нарушения, связанные с невыполнением поднадзорными организациями предписаний Ростехнадзора (8 Донского МТУ ЯРБ и 3 Северо-Европейского МТУ ЯРБ).

Донским МТУ ЯРБ за невыполнение в установленные сроки пунктов предписаний возбуждено 17 дел об административных правонарушениях, которые переданы для рассмотрения в установленном порядке мировым судьям. Вынесены постановления о привлечении 17 должностных лиц к административной ответственности в виде административного штрафа на общую сумму 105 тыс. руб. (штрафы оплачены) по статье 19.5 Кодекса об административных правонарушениях Российской Федерации. Кроме этого за невыполнение в установленные сроки пунктов предписаний приостановлено действие трех лицензий.

Северо-Европейским МТУ ЯРБ за невыполнение пунктов ранее выданного предписания возбуждено дело, вынесено постановление о привлечении должностного лица к административной ответственности в виде административного штрафа на сумму 30 тыс. руб. (штраф оплачен) по статье 19.5 Кодекса об административных правонарушениях Российской Федерации. Кроме этого за невыполнение в установленные сроки пунктов предписаний аннулировано 2 лицензии и приостановлено действие 1 лицензии.

По состоянию на 31 декабря 2015 г. невыполненных предписаний нет.

Общая оценка безопасности блоков атомных станций

Po результатам проведенных инспекций мероприятий по контролю в рамках осуществления постоянного государственного надзора, анализа отчетной информа-
ции МТУ ЯРБ, а также годовых отчетов эксплуатирующей организации о текущем состоянии безопасности атомных станций можно сделать вывод, что, несмотря на выявленные нарушения, состояние ядерной, радиационной и технической безопасности энергоблоков атомных станций оценивается как удовлетворительное. Условия действия лицензий и требования федеральных норм и правил в области использования атомной энергии в основном выполняются.

АО «Концерн Росэнергоатом» продолжается работа по актуализации и внедрению на энергоблоках атомных станций мероприятий по предотвращению и ослаблению последствий запроектных аварий. Указанные мероприятия были разработаны АО «Концерн Росэнергоатом» по результатам анализа проведенных на российских АЭС «стресс-тестов» в связи с аварией на японской АЭС «Фукусима» и согласованы Ростехнадзором. Ростехнадзор осуществляет контроль за выполнением указанных мероприятий.

В 2015 г. выявлено 2 невыполненных мероприятия, о чем в адрес АО «Концерн Росэнергоатом» были направлены соответствующие запросы. Кроме того, Ростехнадзор продолжает работу по анализу действующих нормативных документов с точки зрения наличия в них требований по обеспечению безопасности объектов использования атомной энергии при возникновении экстремальных природных явлений. По результатам анализа подготовлен ряд изменений в федеральные нормы и правила в области использования атомной энергии.

Сооружение атомных станций

В 2015 г. в соответствии с федеральной целевой программой «Развитие атомного энергопромышленного комплекса России на 2007–2010 годы и на перспективу до 2015 года» и Планом реализации «Энергетической стратегии России на период до 2030 года» осуществлялось сооружение 8 энергоблоков АЭС:
- энергоблок № 4 Ростовской АЭС;
- энергоблок № 5 Курской АЭС;
- энергоблок № 5 Балаковской АЭС;
- энергоблоки № 1 и 2 Нововоронежской АЭС-2;
- энергоблоки № 1 и 2 Ленинградской АЭС-2.

Государственный строительный надзор на сооружаемых энергоблоках атомных станций в 2015 г. осуществлялся комплексными рабочими группами под руководством заместителей МТУ ЯРБ в соответствии с требованиями Градостроительного кодекса Российской Федерации, Положения об осуществлении государственного строительного надзора в Российской Федерации, утвержденного постановлением Правительства Российской Федерации от 1 февраля 2006 г. № 54, и приказа Ростехнадзора от 1 октября 2014 г. № 446 «Об осуществлении государственного строительного надзора Федеральной службой по экологическому, технологическому и атомному надзору при строительстве и реконструкции зданий и сооружений объектов использования атомной энергии».

Изданы приказы Ростехнадзора о назначении комплексных рабочих групп для осуществления государственного строительного надзора на всех сооружаемых АЭС, а также на находящихся в эксплуатации АЭС, на которых ведется строительство отдельных объектов.

В 2015 г. в рамках государственного строительного надзора в соответствии с указанными программами проведено 20 проверок на сооружаемых АЭС.
По результатам проверок выявлено 1102 нарушения обязательных требований нормативных правовых актов в градостроительной деятельности, строительных норм и правил, правил по безопасности, иных нормативных актов, проектной документации, оформлено 26 предписаний об устранении выявленных нарушений и составлено 87 протоколов об административных правонарушениях. Выполнение предписаний взято на контроль. Наложено административных штрафов на общую сумму 6 116 000 руб. Анализ актов проверок и предписаний, выданных в отчетном периоде, показал, что все выявленные нарушения устранены в сроки согласно планам мероприятий по их устранению, за исключением тех нарушений, сроки устранения которых не входят в отчетный период.

В отчетном периоде по результатам проведенной проверки законченного строительства объекта — сооружаемого энергоблока № 3 Ростовской АЭС Донским МТУ ЯРБ выдано заключение о соответствии построенного, реконструированного объекта капитального строительства требованиям технических регламентов, иных нормативных правовых актов и проектной документации.

Нарушения в работе атомных станций

В 2015 г. нарушений в работе атомных станций, имеющих признаки аварий А01–А04, и происшествий категорий П01, имеющих радиационные последствия для населения, персонала и окружающей среды, не зафиксировано. В 2015 г. на атомных станциях выявлено 35 нарушений в работе, подлежащих учету в соответствии с НП-004–08 «Положение о порядке расследования и учета нарушений в работе атомных станций», что на 8 нарушений (на 23 %) меньше, чем в 2014 г.

По всем нарушениям в работе АЭС проведены расследования (за исключением одного нарушения в работе энергоблока № 2 Ленинградской АЭС, произошедшего в декабре 2015 г.). Отчеты о проведенных расследованиях рассмотрены в центральном аппарате Ростехнадзора и направлены в ФБУ «Научно-технический центр по ядерной и радиационной безопасности» (НТЦ ЯРБ) для проведения подробного анализа.

В нарушениях, произошедших в 2015 г., так же как и в 2014 г., не зафиксировано нарушений пределов безопасной эксплуатации. Одно нарушение условий безопасной эксплуатации зафиксировано в событии на энергоблоке № 2 Курской АЭС (в 2014 г. зафиксировано одно нарушение на энергоблоке № 1 Курской АЭС).

В связи с неправильной оценкой категорий нарушений в работе АЭС, выявлением отступлений от требований НП-004–08 при расследовании и оформлении отчетов о расследовании нарушений, а также недостаточными корректирующими мерами по недопущению повторения подобных нарушений в 2015 г. по требованию центрального аппарата Ростехнадзора, а также по инициативе АО «Концерн Росэнергоатом» осуществлены разработка дополнительных мероприятий по безопасной эксплуатации АЭС и переоценка нарушений, проведены дополнительные расследования.

По результатам проведения дополнительных расследований были признаны ошибки в классификации ряда нарушений, недостатки в сроках передачи информации о нарушениях, произошедших на энергоблоках. Выпущены 4 отчета о проведении дополнительного расследования. Также центральным аппаратом Ростехнадзора выявлено одно нарушение в работе энергоблока № 2 Смоленской АЭС, произошедшее в августе 2014 г. и подлежащее расследованию и учету в соответствии с НП-004–08. По результатам дополнительного расследования на АЭС выпущен отчет.

Динамика нарушений в работе атомных станций в 2008–2015 гг., подлежащих учету в соответствии с НП-004–08, представлена на рис. 3.
Рис. 3. Динамика нарушений в работе атомных станций в 2008—2015 гг., подлежащих учету в соответствии с НП-004—08

На рис. 4 представлена динамика нарушений в 2008—2015 гг. в работе энергоблоков, находившихся в опытно-промышленной эксплуатации.

Рис. 4. Динамика нарушений в работе энергоблоков в 2008—2015 гг., находившихся в опытно-промышленной эксплуатации
Количество и классификация нарушений в работе АЭС России в соответствии с НП-004—08 в 2015 г. в сравнении с 2014 г. приведены в табл. 5.

Таблица 5

<table>
<thead>
<tr>
<th>АЭС с реакторами типа</th>
<th>Нарушения в работе АЭС в 2015 г.</th>
<th>Итого</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Категория происшествий (по НП-004–08)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>П01</td>
<td>П02</td>
</tr>
<tr>
<td>ВВЭР, в том числе:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Нововоронежская</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Кольская</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Балаковская</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Калининская</td>
<td>1 (0)</td>
<td>0 (2)</td>
</tr>
<tr>
<td>Ростовская</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ростовская (энергоблок № 3 до 17.09.2015)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>РБМК, в том числе:</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Ленинградская</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Курская</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Смоленская</td>
<td></td>
<td></td>
</tr>
<tr>
<td>БН</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Белоярская (энергоблок № 3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Белоярская (энергоблок № 4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ЭГП-6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Билибинская</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Итого: 0 (0) 0 (0) 1 (1) 2 (0) 0 (0) 10 (8) 5 (8) 2 (3) 10 (14) 5 (9) 35 (43)

Примечания: 1. В скобках указано соответствующее количество нарушений в работе АЭС в 2014 г.
3. Энергоблок № 3 Ростовской АЭС введен в промышленную эксплуатацию 17.09.2015.

В 2015 г. по сравнению с 2014 г. количество нарушений в работе АЭС со всеми типами реакторов (ВВЭР, РБМК, БН), кроме ЭГП-6, уменьшилось. Распределение нарушений в работе АЭС в 2011—2015 гг. по типам реакторов приведено в табл. 6.
Таблица 6

Распределение нарушений в работе АЭС в 2011–2015 гг. по типам реакторов

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ВВЭР-440</td>
<td>10</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>ВВЭР-1000</td>
<td>22</td>
<td>26</td>
<td>13</td>
<td>15</td>
<td>11</td>
</tr>
<tr>
<td>РБМК-1000</td>
<td>11</td>
<td>19</td>
<td>19</td>
<td>18</td>
<td>16</td>
</tr>
<tr>
<td>БН-600, БН-800</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>ЭГП-6</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Всего:</td>
<td>46</td>
<td>52</td>
<td>42</td>
<td>43</td>
<td>35</td>
</tr>
</tbody>
</table>

Наибольшее число нарушений в работе энергоблоков произошло на энергоблоках:
№ 2 Ленинградской АЭС (РБМК-1000) и № 3 Калининской АЭС (ВВЭР-1000) — по 4 нарушения;
№ 2 Курской АЭС (РБМК-1000) — 3 нарушения.
Наибольшее число нарушений в работе АЭС произошло на Калининской АЭС
и Ленинградской АЭС — по 8 нарушений.
15 нарушений в работе АЭС было связано со срабатыванием систем безопасности,
причем в 20 % случаев эти срабатывания были ложными.
21 нарушение в работе сопровождалось снижением нагрузки энергоблоков
(и плановыми отключениями по разрешенным заявкам), вызванным отказом систем (элементов),
что на одно нарушение меньше, чем в 2014 г.
В 2015 г. также имели место 2 внеплановых отключения от сети энергоблоков АЭС
(в работе энергоблока № 1 Кольской АЭС и энергоблока № 3 Калининской АЭС).
В 2014 г. были зафиксированы 3 аналогичных нарушения.

Срабатывания аварийной защиты

В 2015 г. произошло 13 нарушений в работе, сопровождавшихся срабатыванием
аварийной защиты (АЗ), в том числе и срабатыванием защиты БСМ (быстрое снижение мощности),
что соответствует количеству срабатываний АЗ (БСМ) в 2014 г.
Такие нарушения в работе произошли: на энергоблоках Ленинградской АЭС
(3 срабатывания БСМ, 2 срабатывания АЗ); Калининской АЭС (2 срабатывания АЗ);
Курской АЭС, Смоленской АЭС (по 2 срабатывания БСМ); на энергоблоках Билибинской АЭС
и Белооярской АЭС (по одному срабатыванию АЗ).
Из общего количества срабатываний АЗ (БСМ) восемь были связаны с необхо-
dимостью выполнения функций безопасности, пять не были связаны с выполнени-
ем функций безопасности.
На Кольской, Нововоронежской, Ростовской и Балаковской АЭС нарушений в
работе со срабатыванием АЗ в 2015 г. не было.

Ошибки персонала

В 2015 г. было допущено 3 ошибки персонала, ставших исходными событиями
нарушений в работе АЭС, что составило около 8,5 % общего количества нарушений
в работе (в 2014 г. было допущено 7 ошибок персонала).
Нарушения в работе, связанные с ошибками персонала, произошли на энерго-
блоках № 3 Белооярской АЭС, № 1 Кольской АЭС, № 2 Калининской АЭС (по од-
ному нарушению).
Из общего количества нарушений в работе, связанных с ошибками персонала,
одно было вызвано неправильным выполнением операций при переключениях в
схемах технологических защит главных циркуляционных насосов (на Белоярской АЭС); одно нарушение связано с ошибками при монтаже цепей вторичной коммутации во вновь смонтированной панели щита системы управления и защиты (СУЗ), что привело к самопроизвольному перемещению одной из групп органов регулирования СУЗ на нижние жесткие упоры (на Кольской АЭС); одно нарушение связано с нарушением технологии сборки уплотнения разъема главной запорной задвижки (ГЗЗ), что привело к разрушению уплотнения и течи по разъему ГЗЗ с последующим остановом энергоблока (на Калининской АЭС).

Основной причиной указанных выше нарушений в работе АЭС, связанных с человеческим фактором, является недостаточная подготовленность оперативного (или ремонтного) персонала, совершившего неправильные действия, а также отсутствие контроля действий подчиненного персонала со стороны руководства.

На остальных АЭС России в 2015 г. ошибок персонала, явившихся исходными событиями нарушений в работе, не было.

Наиболее значимыми нарушениями в работе АЭС в 2015 г. (с точки зрения их влияния на безопасность и возможных последствий) явились следующие:

1. 10 июня 2015 г. произошло нарушение условий безопасной эксплуатации энергоблока № 2 Курской АЭС — эксплуатация в энергетическом режиме с отказом в системе защиты от превышения давления в КМПЦ, что является нарушением условий безопасной эксплуатации, указанных в п. 5.10 Технологического регламента по эксплуатации 2 энергоблока Курской АЭС с реактором РБМК-1000 (оценка по шкале INES — «1»);

2. 8 апреля 2015 г. произошло срабатывание быстрой аварийной защиты (БАЗ) на энергоблоке № 3 Белоярской АЭС при мощности реактора 0,1 % от \(N_{ном} \) (минимально-контролируемый уровень мощности) из-за неправильных действий персонала при подготовке рабочего места для ремонта аппаратуры в схемах технологических защит ГЦН (оценка по шкале INES — «1», обусловлена недостатком в культуре безопасности персонала);

3. 22 декабря 2015 г. зафиксирована течь первого контура по главному разъему ГЗЗ на энергоблоке № 2 Калининской АЭС по причине разрушения сальникового уплотнения из-за неправильных действий ремонтного персонала, нарушившего технологию сборки узла уплотнения ГЗЗ (оценка по шкале INES — «1»);

4. 10 мая 2015 г. произошел повторяющийся отказ элемента системы защиты от превышения давления в КМПЦ по причине незакрытия электромагнитного клапана ИПК ГПК 2Д0-1221 из-за разрушения резьбовой части тарели во время проведения проверки исправности действия ИПК-ГПК энергоблока № 2 Курской АЭС от ключей управления.

Из 35 нарушений в работе по шкале INES (Международная шкала событий на атомных станциях) классифицированы комиссиями по расследованию нарушений в работе: 3 нарушения — уровнем «1» (на энергоблоках № 3 Белоярской АЭС, № 2 Калининской АЭС, № 2 Курской АЭС), 24 — уровнем «0», 8 — «вне шкалы».

Распределение нарушений в работе АЭС по непосредственным причинам приведено в табл. 7.
Распределение нарушений в работе АЭС в 2011–2015 гг. по непосредственным причинам

Таблица 7

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Механические явления, процессы, состояния</td>
<td>10</td>
<td>15</td>
<td>21</td>
<td>10</td>
<td>14</td>
</tr>
<tr>
<td>2</td>
<td>Электрические явления, процессы, состояния</td>
<td>27</td>
<td>18</td>
<td>12</td>
<td>18</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>Химические явления и процессы, физика реактора</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>Гидравлические явления, процессы</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>Явления, процессы в контрольно-измерительных системах</td>
<td>0</td>
<td>8</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>Условия окружающей среды для АС</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>Аномальные условия среды вне помещений атомной станции</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>Человеческий фактор</td>
<td>6</td>
<td>8</td>
<td>3</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>Не установлена</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Всего:</td>
<td>46</td>
<td>52</td>
<td>42</td>
<td>43</td>
<td>34*</td>
</tr>
</tbody>
</table>

* Расследование еще одного нарушения в работе энергоблока № 2 Ленинградской АЭС, произошедшего в декабре 2015 г., не завершено.

Наибольшее количество нарушений в работе АЭС, произошедших в 2015 г., вызвано неисправностями, связанными с электрическими и механическими явлениями, процессами и состояниями. В 2011–2014 гг. большинство непосредственных причин нарушений в работе были также связаны с указанными факторами. При этом число нарушений в 2015 г., связанных с механическими процессами, увеличилось по сравнению с 2014 г. в 1,3 раза, а с электрическими процессами уменьшилось в 1,3 раза. Количество нарушений, связанных с человеческим фактором, сократилось в 2015 г. по сравнению с 2014 г. более чем в 2 раза — с 7 до 3.

Наибольшее количество нарушений в работе АЭС в 2015 г. было вызвано такими коренными причинами, как недостатки управления и организации эксплуатации, дефектами изготовления, а также ошибками конструирования.

Коренные причины трех нарушений в работе не были установлены. Для установления коренных причин необходимо будет провести дополнительные расследования в соответствии с требованиями п. 3.3 НП-004–08.

Распределение нарушений в работе АЭС по коренными причинам приведено в табл. 8.

Таблица 8

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ошибка конструирования</td>
<td>5</td>
<td>10</td>
<td>4</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>Ошибка проектирования</td>
<td>7</td>
<td>9</td>
<td>3</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Дефект изготовления</td>
<td>9</td>
<td>4</td>
<td>9</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>Недостатки сооружения</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>Недостатки монтажа</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>Недостатки наладки</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Годовой отчет о деятельности Федеральной службы

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Недостатки ремонта, выполняемого сторонними организациями</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>Недостатки проектной, конструкторской и другой документации</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>Недостатки управления и организации эксплуатации АС</td>
<td>13</td>
<td>19</td>
<td>17</td>
<td>17</td>
<td>16</td>
</tr>
<tr>
<td>10</td>
<td>Не установлена</td>
<td>5</td>
<td>5</td>
<td>2</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Всего:</td>
<td>46</td>
<td>52</td>
<td>42</td>
<td>43</td>
<td>34*</td>
</tr>
</tbody>
</table>

* Расследование еще одного нарушения в работе энергоблока № 2 Ленинградской АЭС, произошедшего в декабре 2015 г., не завершено.

По результатам расследования указанных выше нарушений в работе АЭС эксплуатирующей организацией АО «Концерн Росэнергоатом» разработаны и реализуются соответствующие корректирующие меры по предотвращению повторения аналогичных событий.

Выполнение корректирующих мероприятий по устранению причин нарушений контролируется отделами инспекций ядерной и радиационной безопасности на АЭС, а также территориальными органами по надзору за ядерной и радиационной безопасностью Ростехнадзора.

Радиоактивные выбросы и сбросы

Величины радиоактивных выбросов инертных радиоактивных газов (ИРГ) и аэрозолей на АЭС России в 2015 г. с оценкой по отношению к годовым предельно допустимым выбросам (ПДВ), рассчитанным и утвержденным для каждой АЭС, приведены в табл. 9.

Таблица 9

Величины радиоактивных выбросов инертных радиоактивных газов и аэрозолей на АЭС России в 2015 г. с оценкой по отношению к годовым предельно допустимым выбросам

<table>
<thead>
<tr>
<th>АЭС</th>
<th>ИРГ</th>
<th>I-131</th>
<th>Co-60</th>
<th>Cs-134</th>
<th>Cs-137</th>
</tr>
</thead>
<tbody>
<tr>
<td>АЭС с ВВЭР-1000 и ВВЭР-440</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Балаковская</td>
<td>34,7 (0,2)</td>
<td>107 (1,7)</td>
<td>4,8 (0,01)</td>
<td>1,1 (0,03)</td>
<td>3 (0,05)</td>
</tr>
<tr>
<td>Калининская</td>
<td>22,8 (0,2)</td>
<td>440 (0,01)</td>
<td>8,7 (0,006)</td>
<td>14 (0,08)</td>
<td>43,8 (0,1)</td>
</tr>
<tr>
<td>Нововоронежская</td>
<td>16 (0,1)</td>
<td>600 (0,02)</td>
<td>150 (0,01)</td>
<td>2,8 (0,02)</td>
<td>17 (0,04)</td>
</tr>
<tr>
<td>Ростовская</td>
<td>81,1 (2,7)</td>
<td>104 (0,1)</td>
<td>6,4 (0,01)</td>
<td>4,8 (0,01)</td>
<td>73,8 (0,2)</td>
</tr>
<tr>
<td>Кольская</td>
<td>72,7 (0,5)</td>
<td>1020 (0,3)</td>
<td>16,1 (0,01)</td>
<td>5,5 (0,03)</td>
<td>6,4 (0,02)</td>
</tr>
<tr>
<td>АЭС с РБМК-1000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Курская</td>
<td>441 (0,2)</td>
<td>1541 (0,02)</td>
<td>149 (0,02)</td>
<td>13,9 (0,002)</td>
<td>49,5 (0,006)</td>
</tr>
<tr>
<td>Ленинградская</td>
<td>388 (0,7)</td>
<td>514 (0,04)</td>
<td>145 (0,3)</td>
<td>30,6 (0,1)</td>
<td>54,6 (0,07)</td>
</tr>
<tr>
<td>Смоленская</td>
<td>126 (0,006)</td>
<td>128 (0,004)</td>
<td>18,6 (0,07)</td>
<td>5,7 (0,007)</td>
<td>14,9 (0,05)</td>
</tr>
<tr>
<td>АЭС с АМВ-100, АМБ-200 и БН-600</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Белоярская</td>
<td>5,1 (0,3)</td>
<td>7100 (0,09)</td>
<td>4 (0,01)</td>
<td>0,7 (0,02)</td>
<td>33 (0,3)</td>
</tr>
<tr>
<td>АЭС с ЭГП-6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Билибинская</td>
<td>521 (1,4)</td>
<td>162 (0,002)</td>
<td>≤33,9*</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Содержание Co-60, Cs-134 и Cs-137 в выбросах Билибинской АЭС ниже минимально-детектируемой активности. Поэтому в таблице представлена суммарная активность долгоживущих радионуклидов в выбросах.
За отчетный период газоаэрозольные выбросы АЭС были значительно ниже ПДВ и не превышали по ИРГ — 2,7 % (Ростовская АЭС), I-131 — 1,7 % (Балаковская АЭС), Co-60 — 0,3 % (Ленинградская АЭС), Cs-134 — 0,1 % (Ленинградская АЭС) и Cs-137 — 0,3 % (Белоярская АЭС).

Объемы жидких сбросов в окружающую среду и поступление радионуклидов в поверхностные воды по отношению к допустимому сбросу (ДС), рассчитанному и утвержденному для каждой АЭС, приведены в табл. 10.

Данные для всех АЭС, кроме Билибинской и Курской АЭС, приводятся по Cs-137, который дает основной вклад (до 70 %) в суммарную активность сбросной воды. Для Билибинской и Курской АЭС данные о радиоактивности сбросной воды приводятся по Co-60, вклады которого в суммарную активность сбросов составляют на Билибинской АЭС до 75 %, на Курской АЭС — до 60 %.

Таблица 10

<table>
<thead>
<tr>
<th>АЭС</th>
<th>Объем сброшенной воды, м³</th>
<th>Поступление радионуклидов, МБк (% ДС)</th>
</tr>
</thead>
<tbody>
<tr>
<td>АЭС с ВВЭР-1000 и ВВЭР-440</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Балаковская*</td>
<td>16 220</td>
<td>5,3</td>
</tr>
<tr>
<td>Калининская</td>
<td>2098</td>
<td>4,2 (0,1)</td>
</tr>
<tr>
<td>Нововоронежская</td>
<td>56 000</td>
<td>18 (0,5)</td>
</tr>
<tr>
<td>Ростовская*</td>
<td>71 960</td>
<td>145</td>
</tr>
<tr>
<td>Кольская</td>
<td>14 218</td>
<td>6,8 (0,01)</td>
</tr>
<tr>
<td>АЭС с РБМК-1000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Курская</td>
<td>53 650</td>
<td>2,6 (0,3)</td>
</tr>
<tr>
<td>Ленинградская**</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Смоленская</td>
<td>40704</td>
<td>4 (0,2)</td>
</tr>
<tr>
<td>АЭС с АМБ-100, АМБ-200 и БН-600</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Белоярская</td>
<td>89 812</td>
<td>150 (0,9)</td>
</tr>
<tr>
<td>АЭС с ЭГП-6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Билибинская</td>
<td>2250</td>
<td>12,5 (0,1)</td>
</tr>
</tbody>
</table>

*Дебалансные воды Балаковской и Ростовской АЭС, поступающие в брызгальные бассейны, являются оборотными, в окружающую среду не сбрасываются и потому ДС для них не устанавливается.

**Дебалансные воды на Ленинградской АЭС отсутствуют.

Специоочищенный конденсат поступает в специальную емкость и используется для внутренних нужд станции.

Фактические значения активностей жидких сбросов АЭС меньше допустимых и не превышали 0,9 % величины ДС (Белоярская АЭС).

Радиоактивные отходы

Информация о заполнении хранилищ жидких (ХЖО) и твердых (ХТО) радиоактивных отходов на АЭС России в 2015 г. приведена в табл. 11—12.
Таблица 11

Информация о заполнении хранилищ жидких радиоактивных отходов на АЭС России

<table>
<thead>
<tr>
<th>АЭС</th>
<th>Вместимость ХЖО, м³</th>
<th>Количество ЖРО, м³</th>
<th>Заполнение ХЖО, %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>АЭС с ВВЭР-1000 и ВВЭР-440</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Балаковская</td>
<td>3800</td>
<td>1466</td>
<td>38,6</td>
</tr>
<tr>
<td>Калининская</td>
<td>3242</td>
<td>2352</td>
<td>72,5</td>
</tr>
<tr>
<td>Нововоронежская</td>
<td>17 691</td>
<td>6626</td>
<td>37,5</td>
</tr>
<tr>
<td>Ростовская</td>
<td>800</td>
<td>370</td>
<td>46,3</td>
</tr>
<tr>
<td>Кольская</td>
<td>8896</td>
<td>5809</td>
<td>65,3</td>
</tr>
<tr>
<td></td>
<td>АЭС с РБМК-1000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Курская</td>
<td>70 400</td>
<td>43 486</td>
<td>61,8</td>
</tr>
<tr>
<td>Ленинградская</td>
<td>21 920</td>
<td>18 993</td>
<td>86,6</td>
</tr>
<tr>
<td>Смоленская</td>
<td>29 400</td>
<td>17 666</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>АЭС с АМБ-100, АМБ-200 и БН-600</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Белоярская</td>
<td>6050</td>
<td>4204</td>
<td>69,5</td>
</tr>
<tr>
<td></td>
<td>АЭС с ЭГП-6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Билибинская</td>
<td>1000</td>
<td>715</td>
<td>71,5</td>
</tr>
</tbody>
</table>

Степень заполнения ХЖО на АЭС в среднем составляла 58 %. Однако ХЖО Ленинградской АЭС заполнены на 86,6 %.

Таблица 12

Информация о заполнении хранилищ твердых радиоактивных отходов на АЭС России

<table>
<thead>
<tr>
<th>АЭС</th>
<th>Вместимость ХТО, м³</th>
<th>Количество ТРО, м³</th>
<th>Заполнение ХТО, %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>АЭС с ВВЭР-1000 и ВВЭР-440</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Балаковская</td>
<td>41 964</td>
<td>20 337</td>
<td>48,4</td>
</tr>
<tr>
<td>Калининская</td>
<td>21 301</td>
<td>9992</td>
<td>46,9</td>
</tr>
<tr>
<td>Нововоронежская</td>
<td>50 015</td>
<td>47 938</td>
<td>95,8</td>
</tr>
<tr>
<td>Ростовская</td>
<td>7476</td>
<td>759</td>
<td>10,2</td>
</tr>
<tr>
<td>Кольская</td>
<td>47 068</td>
<td>14 273</td>
<td>30,3</td>
</tr>
<tr>
<td></td>
<td>АЭС с РБМК-1000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Курская</td>
<td>35 825</td>
<td>27 812</td>
<td>77,6</td>
</tr>
<tr>
<td>Ленинградская</td>
<td>50 242</td>
<td>39 851</td>
<td>79,3</td>
</tr>
<tr>
<td>Смоленская</td>
<td>27 220</td>
<td>13 251</td>
<td>48,7</td>
</tr>
<tr>
<td></td>
<td>АЭС с АМБ-100, АМБ-200 и БН-600</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Белоярская</td>
<td>20 057</td>
<td>14 529</td>
<td>72,4</td>
</tr>
<tr>
<td></td>
<td>АЭС с ЭГП-6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Билибинская</td>
<td>6330</td>
<td>4095</td>
<td>64,7</td>
</tr>
</tbody>
</table>

Степень заполнения ХТО на АЭС в среднем составляла 57,4 %. Однако ХТО Нововоронежской, Ленинградской и Курской АЭС заполнены на 95,8 %, 79,3 % и 77,6 % соответственно.

Дозовые нагрузки на основной и привлекаемый персонал

Коллективная и средняя индивидуальная дозы облучения персонала и лиц, командированных на АЭС России, приведены в табл. 13.
Таблица 13
Коллективная и средняя индивидуальная дозы облучения персонала и лиц, командированных на АЭС России

<table>
<thead>
<tr>
<th>АЭС с ВВЭР-1000 и ВВЭР-440</th>
<th>Число контролируемых лиц</th>
<th>Коллективная доза облучения, чел.Зв</th>
<th>Средняя индивидуальная доза облучения, мЗв</th>
</tr>
</thead>
<tbody>
<tr>
<td>Балаковская</td>
<td>Персонал: 2035, Комнадир: 1775, Итого: 3810</td>
<td>0,95, 1,95</td>
<td>0,47, 0,51</td>
</tr>
<tr>
<td>Калининская</td>
<td>Персонал: 2418, Комнадир: 1241, Итого: 3659</td>
<td>1,1, 1,35</td>
<td>0,46, 0,37</td>
</tr>
<tr>
<td>Нововоронежская</td>
<td>Персонал: 1897, Комнадир: 1853, Итого: 3750</td>
<td>2,33, 4,07</td>
<td>1,23, 1,1</td>
</tr>
<tr>
<td>Ростовская</td>
<td>Персонал: 1347, Комнадир: 2315, Итого: 3662</td>
<td>0,23, 0,78</td>
<td>0,17, 0,21</td>
</tr>
<tr>
<td>Кольская</td>
<td>Персонал: 1355, Командир: 866, Итого: 2221</td>
<td>1,36, 2,59</td>
<td>1,42, 1,16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>АЭС с РБМК-1000</th>
<th>Число контролируемых лиц</th>
<th>Коллективная доза облучения, чел.Зв</th>
<th>Средняя индивидуальная доза облучения, мЗв</th>
</tr>
</thead>
<tbody>
<tr>
<td>Курская</td>
<td>Персонал: 3317, Комнадир: 2927, Итого: 6224</td>
<td>4,53, 13,52</td>
<td>1,37, 2,17</td>
</tr>
<tr>
<td>Ленинградская</td>
<td>Персонал: 3737, Комнадир: 2173, Итого: 5910</td>
<td>6,42, 11,04</td>
<td>1,72, 1,87</td>
</tr>
<tr>
<td>Смоленская</td>
<td>Персонал: 2783, Командир: 2498, Итого: 5281</td>
<td>5,71, 8,97</td>
<td>2,05, 1,7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>АЭС с АМБ-100, АМБ-200 и БН-600</th>
<th>Число контролируемых лиц</th>
<th>Коллективная доза облучения, чел.Зв</th>
<th>Средняя индивидуальная доза облучения, мЗв</th>
</tr>
</thead>
<tbody>
<tr>
<td>Белоярская</td>
<td>Персонал: 1969, Комнадир: 3420, Итого: 5304</td>
<td>0,81, 1,02</td>
<td>0,31, 0,19</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>АЭС с ЭГП-6</th>
<th>Число контролируемых лиц</th>
<th>Коллективная доза облучения, чел.Зв</th>
<th>Средняя индивидуальная доза облучения, мЗв</th>
</tr>
</thead>
<tbody>
<tr>
<td>Билибинская</td>
<td>Персонал: 483, Комнадир: 281, Итого: 764</td>
<td>1,95, 3,03</td>
<td>4,03, 3,97</td>
</tr>
</tbody>
</table>

Максимальные индивидуальные дозы облучения за отчетный период при ремонтах оборудования получили основной (4,03 мЗв) и привлекаемый персонал (3,86 мЗв) Билибинской АЭС.

Случаев превышения среднего значения предела дозы персонала группы А за любые последовательные 5 лет, установленного НРБ-99/2009 и равного 20 мЗв в год, на АЭС России за отчетный период не зарегистрировано.
2.2.2. Объекты ядерного топливного цикла

В 2015 г. под надзором Ростехнадзора находилось 17 промышленных предприятий ядерного топливного цикла (ПЯТЦ), 216 научно-исследовательских, проектных организаций, организаций, выполняющих работы и предоставляющих услуги ПЯТЦ, в том числе осуществляющих перевозки, хранение ядерных материалов и выполняющих иные работы для предприятий ядерного топливного цикла, на основании лицензий центрального аппарата Ростехнадзора.

В число поднадзорных объектов входили:

15 промышленных реакторов, из которых 2 находились в стадии эксплуатации; 3 — в режиме окончательного останова и 10 — в стадии вывода из эксплуатации;

26 ядерных установок по переработке ядерных материалов (добыча и переработка природного урана, сублимационное производство, разделение изотопов урана, химико-металлургическое и радиохимическое производства, производство ядерного топлива, переработка отработавшего ядерного топлива);

15 ядерных установок для проведения НИОКР с использованием ядерных материалов;

39 пунктов хранения ядерных материалов, отработавшего ядерного топлива и радиоактивных отходов.

В настоящее время под надзором остаются 9 промышленных уран-графитовых реакторов, выводимых из эксплуатации, и 3 промышленных уран-графитовых реактора, эксплуатирующиеся в режиме окончательного останова.

За отчетный период центральным аппаратом Ростехнадзора выдана 81 лицензия на право осуществления деятельности в области использования атомной энергии на объектах ядерного топливного цикла (в 2014 г. — 49 лицензий).

МТУ ЯРБ в 2015 г. выдано 125 лицензий на право осуществления деятельности в области использования атомной энергии на объектах ядерного топливного цикла (в 2014 г. — 145 лицензий).

В процессе надзорной деятельности МТУ ЯРБ проведено 695 проверок юридических лиц, в том числе 63 плановых и 157 внеплановых, 475 мероприятий по контролю, проведенных в рамках режима постоянного государственного надзора.

При проведении инспекций выявлено 338 нарушений норм и правил в области использования атомной энергии и 228 нарушений условий действия лицензий, для устранения которых оформлен 651 пункт предписаний.

Результаты инспекционной деятельности МТУ ЯРБ приведены в табл. 14.
Таблица 14

Результаты инспекционной деятельности МТУ ЯРБ

<table>
<thead>
<tr>
<th>Показатели</th>
<th>ВМТУ</th>
<th>СМТУ</th>
<th>СЕМТУ</th>
<th>УМТУ</th>
<th>ЦМТУ</th>
<th>ДМТУ</th>
<th>Всего</th>
</tr>
</thead>
<tbody>
<tr>
<td>Проведено инспекций на ОЯТЦ, в том числе:</td>
<td>87</td>
<td>266</td>
<td>27</td>
<td>224</td>
<td>85</td>
<td>6</td>
<td>695</td>
</tr>
<tr>
<td>плановые</td>
<td>9</td>
<td>26</td>
<td>1</td>
<td>12</td>
<td>15</td>
<td>0</td>
<td>63</td>
</tr>
<tr>
<td>внеплановые</td>
<td>23</td>
<td>59</td>
<td>9</td>
<td>38</td>
<td>22</td>
<td>6</td>
<td>157</td>
</tr>
<tr>
<td>в режиме постоянного государственного надзора</td>
<td>55</td>
<td>181</td>
<td>17</td>
<td>174</td>
<td>48</td>
<td>0</td>
<td>475</td>
</tr>
<tr>
<td>Выявлено нарушений</td>
<td>98</td>
<td>134</td>
<td>4</td>
<td>91</td>
<td>3</td>
<td>3</td>
<td>333</td>
</tr>
<tr>
<td>Вынесены предупреждения</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Административное приостановление деятельности</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Наложено административных штрафов</td>
<td>2</td>
<td>11</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>Передано материалов в правоохранительные органы</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Наибольшее число нарушений федеральных норм и правил в области использования атомной энергии приходится на нарушения, связанные с техническим обслуживанием и ремонтом оборудования, состоянием технической документации, состоянием организационно-распорядительных документов и с обеспечением радиационной безопасности.

Характер выявленных нарушений за последние годы не претерпел существенных изменений.

Показатели лицензионной и надзорной деятельности за рассматриваемый период достаточно стабильны.

По всем выявленным нарушениям выданы предписания, определены сроки устранения нарушений, осуществлялся контроль устранения нарушений. В основном предписания выполнялись в установленные сроки.

Плановые проверки проводились в соответствии с Планом проведения плановых проверок юридических лиц и индивидуальных предпринимателей Федеральной службы по экологическому, технологическому и атомному надзору на 2015 год. Все запланированные проверки проведены.

Проверки в рамках режима постоянного государственного надзора проводились в соответствии с планами работ структурных подразделений МТУ ЯРБ Ростехнадзора.

Предметом проверок в рамках осуществления постоянного государственного надзора являлись следующие вопросы:

- выполнение ранее выданных предписаний об устранении выявленных нарушений обязательных требований и условий действия лицензий;
- исполнение требований федеральных норм и правил в области использования атомной энергии;
- соблюдение порядка проведения технического обслуживания и ремонта оборудования и систем объектов использования атомной энергии;
- проведение мероприятий по обеспечению безопасности объектов использования атомной энергии;
поддержание необходимых характеристик систем и их элементов, влияющих на обеспечение безопасности объектов использования атомной энергии;
организация системы подбора и подготовки кадров, проверки знаний и допуска к работам работников (персонала);
соблюдение требований эксплуатационной и технологической документации;
соблюдение условий действия лицензий, а также разрешений на право ведения работ в области использования атомной энергии, выдаваемых работникам объектов использования атомной энергии;
проведение мероприятий по предупреждению аварий и готовности проверяемых лиц к ликвидации их последствий;
соблюдение порядка обращения с радиоактивными отходами.

В 2015 г., как и в предшествующем году, аварий на предприятиях ядерного топливного цикла не было. Зафиксировано 6 отклонений (в 2014 г. — 4), которые не повлекли каких-либо радиационных и иных последствий и характеризуются уровнем «0» по Международной шкале ядерных событий INES — «не существенно для безопасности».

27 мая 2015 г. при выводе в ремонт электрооборудования насосной станции подачи охлаждающей воды второго контура реакторной установки ЛФ-2 произошло отключение насосного агрегата. В результате снижения общего расхода охлаждающей воды сработала аварийная защита. Действиями автоматики мощность была снижена до 60 % от номинального уровня. После устранения причин отклонения мощность реакторной установки ЛФ-2 восстановлена до номинальной.

13 июня 2015 г. в результате прекращения подачи напряжения кратковременно понизилось давление теплоносителя на входе в реакторную установку ЛФ-2, что привело к срабатыванию аварийной защиты. Действиями автоматики мощность была снижена до 60 % от номинального уровня. После устранения причин отклонения мощность реакторной установки ЛФ-2 восстановлена до номинальной.

1 июля 2015 г. произошло автоматическое переключение питания циркуляционного насоса первого контура на резервное питание от распределительной подстанции. Во время переключения кратковременно понизилось давление теплоносителя на входе в реакторную установку ЛФ-2, что привело к срабатыванию аварийной защиты. Действиями автоматики мощность снижена до 60 % номинального уровня. После устранения причин отклонения мощность реакторной установки ЛФ-2 восстановлена до номинальной.

8 октября 2015 г. в результате ошибочных действий персонала мощность реакторной установки ЛФ-2 была снижена до 60 % номинального уровня. После устранения причин отклонения мощность реакторной установки ЛФ-2 восстановлена до номинальной.

Зафиксированные в 2015 г. отклонения в основном обусловлены неправильными действиями персонала и нарушениями в системе электроснабжения ФГУП «ПО «Маяк».
В последние годы наблюдается тенденция снижения числа нарушений на объектах ядерного топливного цикла и промышленных реакторах, подпадающих под категорию нарушений Федеральных норм и правил в области использования атомной энергии «Положение о порядке расследования и учета нарушений в работе объектов ядерного топливного цикла» (далее — НП-047–11).

Вывод из эксплуатации промышленных уран-графитовых ядерных реакторов

В настоящее время выводятся из эксплуатации 9 промышленных уран-графитовых ядерных реакторов (далее — ПУГР), из них: 5 реакторов на ФГУП «ПО «Маяк» (А, АИ, АВ – 3, АВ – 2); 2 реактора на АО «ОДЦ УГР» и АО «СХК» (И-1, АДЭ-3); 2 реактора на ФГУП «ГХК» (АД и АДЭ-1).

Выполняются строительные (подготовительные) работы по проекту вывода из эксплуатации реактора АД для последующего заполнения шахты реактора смесью.

Эксплуатация, техническое обслуживание, контроль, проверки и испытания систем, важных для безопасности, осуществляются в соответствии с установленными процедурами. Случаев отклонения параметров реакторов АД и АДЭ-1 от нормы в течение года не зарегистрировано.

Нарушений в работе систем и оборудования, важных для безопасности выводимых из эксплуатации реакторов АД и АДЭ-1, не зафиксировано.

ФГУП «ГХК» осуществляло деятельность по выводу из эксплуатации промышленных реакторов АД и АДЭ-1. Дозовые нагрузки на персонал не превышают установленных на предприятии контрольных уровней. Нарушений радиационной безопасности при организации работ по нарядам-допускам не зарегистрировано.

В отчетном периоде при осуществлении постоянного государственного надзора проводились проверки в соответствии с графиками. По фактам выявленных нарушений выданы предписания. В целом рассмотренная документация при проверках соответствует установленным требованиям, выполнение работ оформлено актами, нарушений при проведенном осмотре помещений реактора АД, подлежащих засыпке, не выявлено.

Существующая система обеспечения ядерной и радиационной безопасности на Реакторном заводе ФГУП «ГХК» за отчетный период в основном соответствует требованиям действующих норм и правил в области использования атомной энергии, условиям действия лицензий и оценивается как удовлетворительная.

Под надзором Северского отдела инспекций находятся четыре остановленных промышленных уран-графитовых реактора, переданных от АО «Сибирский химический комбинат» в АО «ОДЦ УГР».

В отчетном периоде завершены работы по выводу из эксплуатации промышленного уран-графитового реактора ЭИ-2, реактор переведен в состояние пункта долговременной изоляции РАО.

В результате проведенных работ образовавшиеся радиоактивные отходы (далее — РАО) были подвергнуты первичной переработке, помещены в упаковочные комплексы, паспортизированы и размещены на площадке промежуточного хранения низкоактивных РАО АО «ОДЦ УГР».
По данным оперативного журнала температура графитовой кладки реактора АДЭ-4 составляет 18–19 °C, реактора АДЭ-5 — 17–18 °C. Закфиксированные температуры ниже контрольного уровня (50 °C).

Транспортно-технологические емкости реакторов АДЭ-4, АДЭ-5 очищены от иловых отложений. В настоящее время все ядерные материалы из реакторов вывезены в пункт хранения ядерных материалов.

В 2015 г. в рамках постоянного государственного надзора проведены 4 проверки. По выявленным 16 нарушениям требований ФНП и условий действия лицензии выданы 3 предписания на устранение нарушений.

Превышений контрольных уровней облучения персонала группы «А» не было. Превышений месячных рабочих норм выбросов и сбросов радиоактивных веществ не выявлено.

За отчетный период не зафиксировано нарушений, связанных с работой промышленных реакторов, расследуемых в соответствии с Положением о порядке расследования и учета нарушений в работе объектов ядерного топливного цикла (НП-047–11).

За отчетный период в АО «ОДЦ УГР» случаев превышения суточных норм выбросов радиоактивных газов в атмосферу, установленных в Контрольных уровнях параметров радиационной безопасности на 2015 год, не выявлено. По данным оперативного журнала температура графитовой кладки реакторов И-1, АДЭ-3 составляет 19–20 °C. Закфиксированные температуры ниже контрольного уровня (50 °C).

В 2015 г. не зафиксировано нарушений в работе, связанных с работой промышленных реакторов, расследуемых в соответствии с Положением о порядке расследования и учета нарушений в работе объектов ядерного топливного цикла (НП-047–11).

Радиационный контроль в АО «ОДЦ УГР» организован в соответствии с графиком на 2015 г. Графики радиационного контроля соблюдаются, случаев превышения контрольных уровней не выявлено.

Состояние радиационной безопасности в АО «ОДЦ УГР» оценивается как удовлетворительное.

На ФГУП «ПО «Маяк» имеется 5 промышленных уран-графитовых реакторов (ПУГР), которые подлежат выводу из эксплуатации. ПУГР переведены в ядерно безопасное состояние и в настоящее время находятся на этапе длительной выдержки.

Также ведется разработка новой концепции вывода из эксплуатации промышленного уран-графитового реактора АВ-2.

В течение 2015 г. на реакторах АВ-1, АВ-2, АВ-3, А и АИ проводился штатный контроль параметров, предусмотренный регламентом, выполнение планов организационно-технических мероприятий по обеспечению и повышению уровня радиационной безопасности.

Вывод из эксплуатации объектов ядерного топливного цикла ПАО «НЗХК»

Ведутся работы в соответствии с п. 4.2.5 НП-057–04 по подготовке к выводу из эксплуатации объектов производства ТВЭЛ для промышленных уран-графитовых реакторов и хранилищ ядерных материалов.

Выполнены демонтаж выведенных из эксплуатации вентиляционного короба вентцентра здания 17/5 цеха № 1 и демонтаж здания № 17В цеха № 1.

Начаты работы по демонтажу зданий № 65 и № 22 комплекса по производству ТВЭЛ для уран-графитовых реакторов. Смонтировано ограждение зданий № 65 и № 22. Начались работы по демонтажу оборудования производства ДАВ для уран-графитовых реакторов в здании 17/5 цеха № 1.

Оборудована площадка для временного хранения металлолома, загрязненного радиоактивными веществами, предназначенного для переработки.

Сублимационный завод АО «СХК»

В связи с завершением выполнения программы ВОУ-НОУ на площадке АО «СХК» была разработана программа вывода из эксплуатации установки фторирования оксидов высокообогащенного урана СЗ АО «СХК». В программе определены мероприятия по выводу из эксплуатации, порядок, условия и планируемые сроки их проведения при подготовке к выводу из эксплуатации установки и при ее выводе из эксплуатации, последовательность и ориентировочный график выполнения этапов вывода из эксплуатации, а также краткая характеристика конечного состояния установки после завершения эксплуатации.

Работы по первому этапу, подготовка к выводу из эксплуатации, перевод оборудования установки в ядерно безопасное состояние, замыкав оборудования с целью извлечения ядерного материала выполнены в полном объеме в установленные сроки. Установка освобождена от ЯДМ, участок ВОУ-НОУ исключен из перечня ядерно опасных участков АО «СХК».

АО «Высокотехнологический научно-исследовательский институт неорганических материалов имени академика А.А. Бочвара»

В АО «Высокотехнологический научно-исследовательский институт неорганических материалов имени академика А.А. Бочвара» (ОАО «ВНИИИМ») в 2015 г. проводились работы по выводу из эксплуатации корпуса «Б».

В соответствии с утвержденным проектом вывода закончены работы по демонтажу корпуса. Проведена реабилитация территории. Конечное состояние объекта, определенное проектом, достигнуто.

Оформлен акт комиссии, подтверждающий достижение конечного состояния, определенного проектом.

При проведении работ дозовые нагрузки на персонал не превысили установленных значений.

АО «Ведущий научно-исследовательский институт химической технологии («ВНИИХТ»)

В АО «ВНИИХТ» в состоянии «останов» находится радиохимический корпус № 8. Использование оборудования по предназначению запрещено приказом по институту. В корпусе обеспечиваются мероприятия по обеспечению безопасности.

В 2015 г. в поднадзорных организациях превышения основных дозовых пределов и установленных контрольных уровней не было. Эксплуатирующие организа-
ции выполняют требования руководящих документов по обеспечению радиационной безопасности. Дозовые нагрузки на персонал и прикомандированных лиц не значительные. Радиационный контроль организован в соответствии с требованиями нормативно-технической документации.

Основными недостатками при выполнении требований по радиационной безопасности и радиационному контролю являются морально и физически устаревшая приборная база, сокращение персонала, занятого радиационным контролем, отсутствие кадрового резерва.

Не зафиксировано фактов сбросов и выбросов РВ сверх установленных значений.

Обращение с отработавшим ядерным топливом (ОЯТ)

АО «Радиевый институт им. В.Г. Хлопина»

Обращение с отработавшим ядерным топливом (далее — ОЯТ) при проведении НИОКР осуществлялось на основании договора с Государственной корпорацией по атомной энергии «Росатом» (далее — ГК «Росатом») на передачу находящихся в федеральной собственности ядерных материалов в пользование Организации от 18 марта 2005 г. № 190600105 и дополнительного соглашения от 14 ноября 2008 г. № 2 к указанному договору с ГК «Росатом».

Нарушений требований федеральных норм и правил и условий действия лицензий при обращении с ОЯТ не выявлено.

АО Государственный научный центр — Научно-исследовательский институт атомных реакторов («ГНЦ НИИАР»)

Обращение на объектах ядерного топливного цикла (далее — ОЯТЦ) АО «ГНЦ НИИАР» с необлученными (свежими) ядерными материалами, ядерным топливом, ОЯТ, с используемыми в технологических процессах ядерного топливного цикла (далее — ЯТЦ) источниками ионизирующих излучений, а также с возникающими при этом РАО соответствует требованиям ФНП.

Хранение облученных тепловыделяющих сборок (далее — ОТВС) на ОЯТЦ АО «ГНЦ НИИАР» проводится в двух зданиях — в здании 177 (в двух бассейнах выдержки) и в здании 117 (в одном бассейне выдержки).

ФГУП «Горно-химический комбинат» (ФГУП «ГХК»)

На временном технологическом хранении в ХОТ-1 находятся отработавшие тепловыделяющие сборки реакторов ВВЭР-1000 с атомных станций Российской Федерации (Нововоронежская, Балаковская, Калининская, Ростовская), Украины (Южно-Украинская, Хмельницкая, Ровенская), Болгарии (Козлодуй), а также пеналы с ТВЭЛами исследованных в ГНЦ НИИАР облученных ТВС.

В течение 2015 г. предприятие выполнило 11 рейсов на атомные станции Российской Федерации и Украины. Принята на хранение 651 ОТВС реакторов ВВЭР-1000. На 1 января 2016 г. хранилище заполнено на 83,7 % от проектной вместимости.

Нарушений безопасных условий эксплуатации хранилища ОЯТ за отчетный период не зафиксировано.

Существующая система обеспечения радиационной безопасности в хранилище облученных тепловыделяющих сборок ядерных реакторов типа ВВЭР-1000, содержащих отработавшее ядерное топливо, в целом соответствует требованиям действующих норм и правил в области использования атомной энергии, условиям действия лицензии и оценивается как удовлетворительная.
Хранение облученных ТВЭЛов ДАВ-90 на Реакторном заводе ФГУП «ГХК»

На Реакторном заводе (РЗ) ФГУП «ГХК» хранятся облученные ТВЭЛы ДАВ-90. В 2015 г. продолжались работы по зачистке бассейнов и перекачке иловых отложений в бассейн № 10 объекта.

В соответствии с утвержденным Госкорпорацией «Росатом» Планом мероприятий по обеспечению загрузки и транспортирования на ФГУП «ПО «МАЯК» отработавших блоков ДАВ-90 из ФГУП «ГХК» на РЗ разработаны и выполняются План-график обследования ТВЭЛов ДАВ-90 и Мероприятия по обеспечению безопасности хранения ТВЭЛов ДАВ-90 со сквозными дефектами оболочек. Продолжаются работы по осмотру облученных блоков ДАВ-90 с последующим запеналиванием дефектных блоков и комплектацией ковшей для загрузки ТУК.

Из-за отсутствия финансирования ФГУП «ГХК» в 2015 г. не планировались и не проводились работы по загрузке облученными блоками ДАВ-90 в контейнеры ТУК-135 и транспортированию для переработки на ФГУП «ПО Маяк».

«Сухое» хранилище облученного топлива реакторов РБМК-1000 на ФГУП «ГХК»

«Сухое» хранилище облученного ядерного топлива (ХОТ-2) предназначено для технологического хранения ОЯТ реакторов РБМК-1000 и ВВЭР-1000. В 2015 г. в хранилище поступали ОТВС Ленинградской и Курской атомных станций, выполнено 9 рейсов.

Загрузка камер хранения ХОТ-2 выполняется по картограмме в соответствии с требованием технологического регламента.

На 1 января 2016 г. года хранилище загружено на 16%.

Дозовые нагрузки на персонал не превышают установленных на предприятии контрольных уровней. Нарушений радиационной безопасности при организации работ не зарегистрировано.

Для отработки действий персонала при авариях в соответствии с ежегодным графиком проводятся противоаварийные тренировки.

Проведена внеплановая проверка достоверности сведений, представленных ФГУП «ГХК». Недостоверных сведений и факторов, препятствующих осуществлению заявленной деятельности, не выявлено.

Хранилище ядерных материалов СГП-100 на ФГУП «ГХК»

Объект 100 предназначен для хранения диоксида платинума. Хранилище склада соответствует требованиям, предъявляемым к хранилищам I класса, оснащено техническими средствами физической защиты, контроля радиационной обстановки, аварийной сигнализации обнаружения СЦР, оперативного информационного обеспечения, контроля, учета продукции.

Хранение ядерных материалов осуществляется в контейнерах в соответствии с утвержденными схемами размещения.

За отчетный период в склад готовой продукции СГП-100 принимались упаковки с диоксидом платинума из АО «СХК». Случаев срабатывания САС в отчетном периоде не было.

Для отработки действий персонала при авариях в хранилищах ЯМ проводятся противоаварийные тренировки по ежегодным графикам, утверждаемым главным специалистом, руководителем службы ЯБ СХТК.

В рамках постоянного государственного надзора проведены две проверки по соблюдению требований ФНП при эксплуатации пунктов хранения ядерных матери-
Годовой отчет о деятельности Федеральной службы

Хранилище ядерных материалов и радиоактивных веществ на объекте 400 на ФГУП «ГХК»

Склады объекта 400 (401/1, 401/2, 401/3, 401/4, 425) предназначены для хранения: необлученных стандартных урановых блоков из природного урана; радия и радия-мезатория; слитков металлического урана и урансодержащих материалов с обогащением по радионуклиду U-235 не более 0,71 %; соединений тория (оксида, оксалата, нитрата).

Контроль радиационной обстановки в помещениях об. 400 обеспечивается отделом радиационной безопасности Радиохимического завода. По данным производственного контроля радиационные параметры в хранилище не превышают установленные контрольные уровни воздействия.

В рамках постоянного государственного надзора проведена проверка состояния ядерной и радиационной безопасности при эксплуатации пунктов хранения ядерных материалов на ФГУП «ГХК», по результатам оформлено предписание. Уведомления об устранении выявленных нарушений представлены.

Эксплуатация промышленных реакторов ФГУП «ПО «Маяк»

Отказов и ложных срабатываний стационарных систем САС СЦР в отчетном периоде на КПРУ РУСЛАН и КПРУ ЛФ-2 не зафиксировано.

Случаев нарушений норм и условий обеспечения ядерной безопасности и дозиметрического контроля на реакторных заводах ФГУП «ПО «Маяк» в 2015 г. зафиксировано не было.

Условия труда персонала, выполняющего обслуживание и ремонт оборудования реакторной установки «ЛФ-2», соответствуют действующим нормам и правилам.

Общее состояние ядерной и радиационной безопасности на промышленных реакторах и заводах ФГУП «ПО «Маяк» в 2015 г. можно оценить как удовлетворительное.

ФГУП «ГХК»

Эксплуатация промышленного реактора АДЭ-2 ФГУП «ГХК» осуществляется после 15 апреля 2010 г. в режиме окончательного останова.

Разработана «Общая программа комплексного обследования сооружений и комплекса с ПУГР АДЭ-2, зданий и сооружений, оборудования, трубопроводов, элементов технологических систем, входящих в состав реактора АДЭ-2, расположенных на реакторном заводе, и хранилищ ОЯТ реакторного завода, входящих в состав ядерной установки ФГУП ФЯО «ГХК», с целью продления назначенного срока эксплуатации».

В настоящее время программа направлена на согласование в ГК «Росатом». В 2015 г. актуализирован (пересмотрен полностью) «Отчет по обоснованию безопасности».
Параметры эксплуатации реактора соответствуют параметрам, установленным технологическим регламентом и организационно-распорядительными документами. Нарушения при эксплуатации ядерной установки не зарегистрированы.

Производство ядерного топлива на предприятиях АО «ТВЭЛ» ПАО «Машиностроительный завод (ПАО «МСЗ»), ПАО «Новосибирский завод химических концентратов» (ПАО «НЗХК») и АО «Чепецкий механический завод» (АО «ЧМЗ»)

В 2015 г. на предприятиях по производству ядерного топлива инцидентов, способных повлиять на обеспечение радиационной безопасности персонала, населения и окружающей среды, зафиксировано не было. Контроль радиационной обстановки осуществлялся в соответствии с утвержденными планами радиационного контроля. Дозовые нагрузки на персонал, уровни радиоактивного загрязнения оборудования, территории, мощность дозы на прилегающей территории не превысили пределов, установленных НРБ-99/2009.

Планы мероприятий по устранению нарушений, отмеченных в актах и предписаниях по результатам комплексных проверок, проведенных комиссией Ростехнадзора, выполняются в соответствии с утвержденными сроками.

Существующая система обеспечения ядерной и радиационной безопасности в ОАО «МСЗ», ОАО «НЗХК» и ОАО «ЧМЗ» за отчетный период в основном соответствует требованиям действующих норм и правил в области использования атомной энергии и условиям действия лицензий Ростехнадзора и оценивается как удовлетворительная.

Радиохимическое и химико-металлургическое производство

Эксплуатация установок и оборудования радиохимических заводов (РХЗ) АО «СХК», ФГУП «ГХК», ФГУП «ПО «Маяк» велась в соответствии с действующей нормативно-технической документацией. Замечаний по работе установок, оборудования, приборов контроля, средств автоматики не выявлено. Отклонений параметров технологического процесса от установленных значений за отчетный период не выявлено.

В цехе 1 завода 20 размещена установка «Пакет». В 2015 г. работы на установке «Пакет» не проводились.

На радиохимическом заводе ФГУП «ГХК» в отчетном периоде выполнялись работы по переработке урансодержащего сырья (отходов оборотных сплавов урана марки «Н»), по консервации подземных емкостей-хранилищ, а также по переработке пульп радиоактивных отходов. Пределы и условия безопасной эксплуатации оборудования и систем, важных для безопасности, не нарушались.

За отчетный период полученные дозовые нагрузки на персонал заводов и сторонних организаций не превышали допустимых значений и находились ниже контрольных уровней. Среднегодовые значения активности радиоактивных аэрозолей в воздухе рабочей зоны, среднегодовые значения поверхностного радиоактивного загрязнения контролируемых поверхностей не превышали установленных контрольных уровней. За отчетный период фактические значения выбросов радиоактивных веществ не превышали установленных норм.
В отчетный период существующая система обеспечения ядерной, радиационной безопасности соответствовала требованиям действующих норм и правил в области использования атомной энергии и условиям действий лицензий и оценивается как удовлетворительная.

Производства разделения изотопов

Разделительное производство АО «ПО Электрохимический завод» (АО «ПО ЭХЗ»)

АО «ПО ЭХЗ» осуществляет свою деятельность в рамках лицензии Ростехнадзора на обращение с радиоактивными веществами при их переработке и хранении.

Условиями действия вышеуказанной лицензии предприятию разрешено обращение с ядерными материалами, содержащими изотоп уран-235 не более 97 % масс. и переработка обогащенного уранового продукта с содержанием изотопа уран-235 не более 97 % масс. для получения закиси-окиси урана. В рамках указанной лицензии проводились работы: производство обогащенного урена, содержащего изотоп урена-235 не более 97 % (разделение изотопов урена); хранение необлученных ядерных материалов, в том числе во временных хранилищах; получение закиси-окиси урена после переработки обогащенного урена с содержанием изотопа урена-235 не более 97 %; транспортирование упаковок, содержащих ядерные материалы, в пределах промышленной площадки АО «ПО ЭХЗ»; хранение радиоактивных отходов.

Проводится наработка радиоактивного изотопа криптон-85.

Нарушений в работе систем и оборудования, важных для безопасности на АО «ПО ЭХЗ», в 2015 г. не зарегистрировано.

В соответствии с требованиями Отраслевых правил (ПБЯ-06-10–99) на АО «ПО ЭХЗ» ежегодно проводится противоаварийная тренировка в условиях, близких к тем, которые могут иметь место при возникновении СЦР. Ложных срабатываний систем аварийной сигнализации о возникновении СЦР в 2015 г. не было.

Существующая система обеспечения ядерной и радиационной безопасности на АО «ПО ЭХЗ» за отчетный период в основном соответствует требованиям действующих норм и правил в области использования атомной энергии, условиям действия лицензии и оценивается как удовлетворительная.

Завод разделения изотопов АО «Сибирский химический комбинат» АО «СХК»

Деятельность Завода разделения изотопов (далее — ЗРИ) АО «СХК» предусматривает обращение с ядерными материалами обогащением по U-235 до 5 % и до 91 % массовых.

Отклонений параметров технологического процесса от установленных значений за отчетный период зафиксировано не было, технологическое оборудование работало без нарушений.

Радиационный контроль осуществляет группа радиационной безопасности завода разделения изотопов отдела радиационной безопасности АО «СХК».

Объем и периодичность радиационного контроля на ЗРИ определяется графиками контроля радиационной обстановки. Превышений установленного контрольного уровня поступлений радионуклидов в организм персонала завода (контролируемых лиц) за отчетный период не зафиксировано.

Существующая система обеспечения ядерной и радиационной безопасности на ЗРИ АО «СХК» за отчетный период в основном соответствует требованиям норм и
правил в области использования атомной энергии, условиям действия лицензии и оценивается как удовлетворительная.

Разделительное производство АО «Ангарский электролизный химический комбинат» (АО «АЭХК»)

Основные работы, включенные в общий план предприятия «План организационно-технических мероприятий по улучшению состояния ядерной и радиационной безопасности на 2015 г.», выполнены. В отчетном периоде проведена одна внеплановая проверка достоверности сведений, представленных предприятием с заявлением на получение изменения условий действия лицензии Ростехнадзора на право размещения, сооружения, эксплуатации и вывода из эксплуатации ядерных установок, радиационных источников и пунктов хранения ядерных материалов и радиоактивных веществ, хранилищ радиоактивных отходов, заключающегося в разрешении выполнения работ по ликвидации корпуса 2 здания № 802 и корпуса 4 здания № 804. Недостоверных сведений и факторов, препятствующих осуществлению заявленной деятельности, не выявлено.

В рамках осуществления постоянного надзора проведено 11 проверок состояния ядерной, радиационной и технической безопасности, по учету и контролю ядерных материалов, радиоактивных веществ и радиоактивных отходов. По выявленным в ходе проверок нарушениям выписано 4 предписания на их устранение. За отчетный период проведена одна плановая выездная проверка по ядерной и радиационной безопасности, по учету и контролю ЯМ, по физической защите ЯМ. По результатам проверки выписаны предписания на устранение выявленных нарушений.

Существующая система обеспечения ядерной и радиационной безопасности на Разделительном производстве АО «АЭХК» за отчетный период в основном соответствует требованиям действующих федеральных норм и правил в области использования атомной энергии, условиям действия лицензии и оценивается как удовлетворительная.

Разделительное производство АО «Уральский электрохимический комбинат» (АО «УЭХК»)

В АО «УЭХК» постоянно ведутся работы по модернизации разделительного производства с заменой газовых центрифуг и переходом на АКСУ нового поколения, заменой оборудования типа «О» на тип «Б», проводится совершенствование комплекса инженерно-технических средств физической защиты.

Ежегодно в подразделениях организаций проводятся комиссионные проверки состояния охраны труда, ядерной и радиационной безопасности и охраны окружающей среды. По результатам проверок составляются планы организационно-технических мероприятий по устранению недостатков и совершенствованию ядерной и радиационной безопасности.

Случаев превышения контрольных уровней концентрации объемной активности радиоактивных аэрозолей в воздухе производственных помещений в отчетный период не выявлено.

Сублиматные производства

Сублиматный завод АО «СХК»

Производство Сублиматного завода (СЗ) АО «СХК» в 2015 г. работало без нарушений. За отчетный период аварий и радиационных происшествий не было. Орга-
низация и проведение противоаварийных мероприятий на заводе осуществляются в соответствии с «Планом мероприятий по защите персонала в случае аварии на СЗ АО «СХК»» и планами ликвидации аварий.
Существующая система обеспечения ядерной и радиационной безопасности на СЗ АО «СХК» за отчетный период в основном соответствует требованиям действующих федеральных норм и правил в области использования атомной энергии, условиям действия лицензии и оценивается как удовлетворительная.

Сублиматный завод АО «АЭХК»
Сублиматное производство остановлено. Производится зачистка и консервация оборудования и подготовка документации на вывод производства из эксплуатации.

Предприятия по добыче урана

ПАО «Приаргунское производственное горно-химическое объединение» (ПАО «ППГХО»)
ПАО «ППГХО» осуществляет свою деятельность по обращению с ЯМ и РАО при транспортировании, переработке и добыче урановых руд в соответствии с лицензиями, выданными Ростехнадзором. За отчетный период условия действия лицензии в основном выполнялись.
ПАО «ППГХО» включает Подземный урановый рудник № 1 (ПУР-1), Подземный рудник № 8 (ПР-8) и производство по гидрометаллургической переработке урана — Гидрометаллургический завод (далее — ГМЗ). В ПУР-1 входят шахты № 1 и «Глубокая». В состав ПР-8 входят шахта 6р и рудник № 8. На бывшем руднике № 2 добыча руды приостановлена. ПУР-1 и ПР-8 осуществляют подземную добычу урановой руды, погашение образовавшихся в результате добычи пустот, текущий ремонт горного оборудования, обращение с радиоактивными отходами, образовавшимися в результате производственной деятельности (металлолом, древесные отходы). ГМЗ перерабатывает урановые руды до готового продукта — закиси-окиси урана.
Эксплуатация, техническое обслуживание, контроль и проверки систем, важных для безопасности, осуществляются в соответствии с установленными процедурами. Нарушений в работе систем и оборудования не зафиксировано.
Радиационный контроль производства ведется в соответствии с Планом-графиком контроля радиационных и вредных производственных факторов на 2015 г. Случаи превышения контрольного уровня эффективной дозы, эквивалентной объемной активности продуктов распада радона и долгоживущих радиоактивных аэрозолей, их причины в соответствии с приказом по предприятию фиксируются и доводятся до руководства соответствующих подразделений и ПАО «ППГХО». Анализ их причин и при необходимости принятие дополнительных мер проводятся на ежемесячных совещаниях по РБ, проводимых директором по производству ПАО «ППГХО». Контрольный уровень по индивидуальной эффективной дозе не превышен ни у одного работника.
Основные мероприятия, выполненные в отчетном периоде для улучшения радиационной обстановки и улучшению вентиляции рудников:
очистка от пыли воздуховодов приточной и вытяжной вентиляции;
регулярная гидроуборка на рабочих местах, а также очистка поверхностей оборудования и помещений от просыпей и навалов руды;
В ПУР-1: установлены изолирующие деревянные вент. перемычки по горным выработкам; произведена изоляция нерабочих выработок бетонными перемычка-
ми; установлены замерные станции стандартной конструкции для замера количества проходящего воздуха в воздуховодах;

В ПР-8: восстановлены и установлены новые бетонные изолирующие вент. перемычки; произведены ревизия и ремонт вытяжной вентиляции стволов; проведена дополнительная герметизация надшахтного здания ствола 14В; произведена ревизия и дополнительная герметизация вент. трубопроводов ствола; проведены погашения пустот твердеющей закладкой 103,41 тыс. м³ (71 % от плана).

АО Гидрометаллургический завод

За отчетный период радиационная обстановка по основным производственным цехам гидрометаллургического производства в целом оценивается удовлетворительно. Поддержанию сравнительно низкого уровня объемной активности в воздухе рабочих помещений способствовали проведение технических мероприятий по улучшению вытяжной и приточной вентиляции, проведение очистки воздуховодов от пыли, замена негерметичных коробов, воздуховодов и вентиляторов, постоянное орошение рудной массы.

За отчетный период проведены 2 плановые проверки. По выявленным пяти нарушениям выписано 2 предписания на их устранение. В рамках осуществления постоянного государственного надзора состояния радиационной безопасности, физической защиты, учета и контроля при обращении с ЯМ и РАО проведено 9 проверок. При проведении проверок выявлено 17 нарушений. По выявленным нарушениям выписано 6 предписаний на их устранение.

Аварий и нарушений условий нормальной эксплуатации, расследуемых в соответствии с НП-047–11 на ГМЗ, а также на других радиационно опасных объектах ПАО «ППГХО» не было. Нарушений в работе систем и элементов, важных для безопасности, не зафиксировано.

Существующая система обеспечения радиационной безопасности на ПАО «ППГХО» за отчетный период в основном соответствует требованиям действующих федеральных норм и правил в области использования атомной энергии, условиям действия лицензий и оценивается как удовлетворительная.

АО «Хиагда»

Радиационных аварий и радиационных происшествий в отчетном периоде в АО «Хиагда» не зафиксировано. Персонала, получившего дозу облучения свыше установленных значений, нет.

На участке подземного выщелачивания проводится радиационный контроль по установленным контрольным точкам, в том числе в помещении отделения сорбции, помещении получения химического концентрата, на полигоне добычи продуктивных растворов, на территории промышленной площадки (всего 23 контрольные точки).

За отчетный период проведены 4 проверки в рамках осуществления постоянного государственного надзора по направлениям: обеспечение радиационной безопасности; аварийная готовность; выполнение требований федеральных норм и правил по учету, контролю и физической защите ядерных материалов. По результатам проверок выдано предписание на устранение выявленных нарушений.

В отчетном периоде АО «Хиагда» направило в Ростехнадзор комплект документов на внесение изменений в условия действия лицензии в связи с разрешением, выданным Госкорпорацией «Росатом» на ввод объекта в эксплуатацию.

© Оформление. ЗАО НТЦ ПБ, 2016
Существующая система обеспечения радиационной безопасности на АО «Хиагда» за отчетный период в основном соответствует требованиям действующих федеральных норм и правил в области использования атомной энергии, условиям действия лицензий и оценивается как удовлетворительная.

АО «Далур»
Радиационных аварий и происшествий в отчетном периоде в АО «Далур» не зафиксировано.
Состояние радиационной безопасности на АО «Далур» соответствует требованиям норм и правил в области использования атомной энергии.

Проектируемые предприятия
В 2015 г. ЗАО «Эльконский горно-металлургический комбинат» (Эльконский ГМК), ЗАО «Уранодобывающая компания «Горнское» и ЗАО «Лунное» непосредственно не осуществляли обращение с ядерными материалами, радиоактивными веществами и радиоактивными отходами.

АО «Эльконский ГМК»
Работы на месторождениях «Элькон», «Непроходимое», «Дружное» и «Северное» Эльконского урановодорудного района были остановлены.
ЗАО «Эльконский ГМК» радиационно опасных объектов не имеет.
В отчетном периоде работы по обращению с РАО не осуществлялись, сбросов и выбросов РВ в окружающую среду не осуществлялось.
В отчетном периоде проверки состояния радиационной безопасности не планировались и не проводились.

АО «Лунное»
На урановом месторождении «Луночное» работы проводились только с целью извлечения из руды золота.
В отчетном периоде работы по обращению с РАО, сбросы и выбросы РВ в окружающую среду не осуществлялись.

Обращение с РАО. Сбросы и выбросы радиоактивных веществ в окружающую среду

АО «СХК»
В результате производственной деятельности на комбинате образуются твердые радиоактивные отходы низкой, средней и высокой активности, жидкие радиоактивные отходы низкой, средней активности, а также осуществляются сбросы и выбросы радиоактивных веществ в окружающую среду. Нормы образования жидких радиоактивных отходов, твердых радиоактивных отходов соблюдаются.
Превышений ежемесячных рабочих норм выбросов радионуклидов в атмосферу не было.
Суммарное содержание альфа- и бета-активных нуклидов в сточных водах, направляемых в промышленную канализацию, не превышало уровня нижних пределов обнаружения методов, которые составляют не выше 50 % от контрольных уровней.
За отчетный период нарушений радиационной безопасности, приведших к выходу радиоактивных веществ в окружающую среду и повышенному облучению персонала, не было. Фактические значения выбросов радиоактивных веществ не пре-
вышли рабочие нормы (89%). Эксплуатация газоочистных и пылеулавливающих установок ведется в соответствии с действующей нормативно-технической документацией. Замечаний по работе оборудования, приборов контроля, средств автоматики, системы пробоотбора не зафиксировано.

Происшествий при обращении с РАО не зафиксировано.

Существующая система обеспечения радиационной безопасности при обращении с РАО в АО «СХК» за отчетный период в основном соответствует требованиям действующих норм и правил в области использования атомной энергии, условиям действия лицензии и оценивается как удовлетворительная.

ФГУП «Горно-химический комбинат» (ФГУП «ГХК»)

В результате производственной деятельности основных подразделений ФГУП «ГХК» образуются жидкие и твердые радиоактивные отходы различной удельной активности и радиоактивные газоаэрозольные выбросы. Сбор и сортировка РАО производится в местах образования. Переработка и временное хранение РАО осуществляются централизованно на объектах цеха № 1 Изотопно-химического завода. Жидкие радиоактивные отходы передаются на захоронение на полигон «Северный» филиала «Железногорский» Федерального государственного унитарного предприятия «Национальный оператор по обращению с радиоактивными отходами».

В связи с изменением условий эксплуатации основных подразделений ФГУП «ГХК» (Реакторного завода и Радиохимического завода) количество ЖРО, сбрасываемых в бассейн 366 и перерабатываемых на схеме очистки, существенно снизилось.

В рамках государственного контракта между ФГУП «ГХК» и Госкорпорацией «Росатом» на бассейне 365 продолжаются работы по созданию экспериментального стенда по отработке технологий иммобилизации иловых отложений бассейна-хранителя РАО. Работы проводятся на основании лицензии Ростехнадзора на использование ядерных материалов при проведении научно-исследовательских работ.

МТУ ЯРБ Сибири и Дальнего Востока Горно-химическому комбинату выданы разрешения на выбросы радиоактивных веществ в атмосферный воздух и на сбросы радиоактивных веществ в водные объекты на 2015 г. Контрольные уровни сбросов и выбросов разработаны для всех источников. Контроль соблюдения установленных норм сбросов и выбросов осуществляют Радиоэкологический центр ГХК в соответствии с Графиком радиационного контроля выбросов и сбросов предприятия и состояния объектов окружающей среды. По данным Радиоэкологического центра ФГУП «ГХК» за отчетный период величины среднемесячных сбросов и выбросов по отдельным радионуклидам не превышали контрольных значений.

Предприятием в 2015 г. осуществлялись следующие виды деятельности по обращению с РАО: очистка жидких нетехнологических отходов на схеме цеха № 1 ИХЗ; обращение с твердыми радиоактивными отходами (ТРО); передача среднеактивных жидк, технологических отходов и низкоактивных жидк, отходов в филиал «Железногорский» ФГУП «НО РАО» для подземного захоронения на полигоне «Северный»; очистка газообразных радиоактивных отходов.

В рамках постоянного государственного надзора проведена проверка обеспечения работоспособности систем и элементов, важных для безопасности, организации и проведения ремонтных работ, продления сроков службы объектов цеха № 1 Изотопно-химического завода ФГУП «ГХК». Нарушений не выявлено.

В отчетном периоде проведена проверка соблюдения требований ФНП при передаче РАО между организациями (ФГУП «ГХК» и ФГУП «НО «РАО») и между

© Оформление. ЗАО НТЦ ПК, 2016
подразделениями ФГУП «ГХК».

Обращение с РАО в АО «ПО ЭХЗ»

На эксплуатацию хранилищ ТРО и ЖРО имеются санитарно-эпидемиологические заключения. Пункты хранения ТРО находятся в пределах территории санитарно-защитной зоны предприятия.

Результаты контроля за содержанием урана в выбросах в атмосферу, объектах окружающей среды показывают, что деятельность АО «ПО ЭХЗ» не оказывает радиационного воздействия на окружающую среду и население сверх установленных норм.

В отчетном периоде мероприятий по уменьшению объемов РАО не планировалось и не проводилось. Система обращения с радиоактивными отходами на предприятии обеспечивает непревышение уровней радиационного воздействия на персонал, население и окружающую среду.

Обращение с РАО в ПАО «НЗХК»

В процессе выполнения разрешенных видов деятельности в ПАО «НЗХК» образуются радиоактивные отходы, относящиеся к категории очень низкоактивные и низкоактивные РАО. Радионуклидный состав образующихся отходов аналогичен радионуклидному составу необлученного урана. Отнесение отходов к категории РАО осуществляется после проведения радиационного контроля.

Образующиеся в ходе техпроцессов растворы, загрязненные радионуклидами, подвергаются переработке в цехе № 1. Технологические растворы после процесса известкования переводятся в форму твердых урансодержащих известковых осадков, которые передаются гидротранспортом в виде пульпы во вторую секцию хвостохранилища. Отработавшие закрытые радионуклидные источники (ОЗРИ) размещены на складе «Изотоп».

На хвостохранилище эксплуатируется 9 наблюдательных скважин. Дополнительно организована сеть наблюдательных скважин системы объектового мониторинга состояния недр хвостохранилища, включающая 35 скважин и 10 гидрологических постов.

В соответствии с планом-графиком контроля объектов окружающей среды проводится контроль радиационной обстановки на хвостохранилище и его санитарно-защитной зоне.

Загрязненный радионуклидами металлолом после дезактивации в отчетном периоде направлялся на площадку временного хранения ТРО на территории предприятия и далее на переплав.

В отчетный период была проведена 1 проверка в рамках осуществления постоянного государственного надзора, состояния радиационной безопасности при обращении с РАО на хвостохранилище предприятия. Выявлено 1 нарушение требований ФНП на обращение с радиоактивными отходами при их переработке, хранении и транспортировании. Выписано предписание на устранение нарушения.
Существующая система обеспечения радиационной безопасности при обращении с РАО за отчетный период в основном соответствует требованиям действующих норм и правил и условий действия лицензии.

Обращение с РАО в АО «АЭХК»

В процессе разделительного производства образуются твердые радиоактивные отходы (ТРО).

ТРО направляются на временное хранение в пункты хранения РАО АО «АЭХК». Временное хранение ТРО производится на основании схем укладки. Превышений контрольных уровней содержания урана и фтор-иона в грунтовых водах не отмечалось.

Приказом МТУ ЯРБ Сибири и Дальнего Востока от 25 августа 2015 г. № 479-пр АО «АЭХК» выдано разрешение на выбросы радиоактивных веществ в атмосферный воздух. Срок действия разрешения до 1 сентября 2020 г. Сброс сточных технологических вод в гидрографическую сеть не осуществлялся.

Сведения о радиоактивных сбросах и выбросах представляются в ежемесячных отчетах отдела радиационной безопасности предприятия и не превышают установленных уровней.

Нарушений в работе при обращении с РАО, повлиявших на состояние радиационной безопасности, не зафиксировано.

Обращение с РАО в АО «Хиагда»

Радиоактивными отходами на предприятии являются загрязненный грунт и технологическое оборудование при выводе его из эксплуатации. Загрязненный грунт с полигона собирается, обрабатывается в слабокислом растворе и закачивается в скважину на полигоне. Технологическое оборудование, выведенное из эксплуатации, дезактивируется и помещается на площадку временного хранения радиоактивных отходов. Технологические растворы с радиоактивными веществами возвращаются в технологический процесс и в технологические скважины. Технологический регламент добычи урана методом подземного выщелачивания не предполагает образования твердых радиоактивных отходов на первом этапе работы. Возможно образование твердых радиоактивных отходов при замене ионообменных смол и выводе оборудования из эксплуатации.

Аварий и радиационных происшествий в 2015 г. на АО «Хиагда» не зафиксировано. Персонала, получившего дозу облучения свыше установленных контрольных уровней, нет.

В 2015 г. проведено 4 проверки в рамках осуществления постоянного государственного надзора по направлениям: обеспечение радиационной безопасности; аварийная готовность; выполнение требований ФНП по учету, контролю и физической защите ядерных материалов. По результатам проверок выдано предписание на устранение выявленных нарушений.

Обращение с РАО в ПАО «ППГХО»

Основной объем радиоактивных отходов образуется в результате гидрометаллургической переработки урановой руды. Все природные радионуклиды уранового ряда после извлечения урана сбрасываются в хвостохранилище. Другими видами РАО является радиоактивный, не поддающийся очистке металлолом. Металлом подземных урановых рудников ПУР-1 и ПР-8 большей своей частью остается в
Годовой отчет о деятельности Федеральной службы
подземных горных выработках. В соответствии с Техническим решением на размещение металлолома ПУР-1 и ПР-8 и ООО РАО, утвержденным исполнительным директором ПАО «ППГХО», лом черных металлов, имеющий высокое радиоактивное загрязнение, не подлежит отправке за пределы рудников и используется в подземных выработках рудника в качестве армирующего материала в закладочной смеси. Выданный на поверхность металлолом, а также образующийся в результате ремонта оборудование металлолом в вывозится на шпур хвостохранилища и засыпается грунтом в соответствии с установленным регламентом.

В соответствии с разрешением проектной организации ВНИПИПромтехнология выщелоченная руда используется для отсыпки и наращивания дамбы хвостохранилища. Продолжаются работы по вывозу хвостов выщелачивания на дамбу.

Радиоактивные вентиляционные выбросы шахт ПУР-1 и ПР-8 содержат радон и его продукты распада, а также долгоживущие радионуклиды уранового ряда и в соответствии с проектом выбрасываются без очистки. Вентиляционные выбросы ГМЗ проходят очистку.

За отчетный период предприятием выполнены следующие работы: проведен ремонт ворот № 1, 2, 3 на въездах на хвостохранилище; постоянно проводятся работы по текущему ремонту ограждения хвостохранилища; регулярно пополняться засыпка площадки для временного хранения металлолома на шпуре хранилища «Верхнее»; проводится регулярная очистка технологических дорог от просыпей руды.

Обращение с РАО в ФГУП «Национальный оператор по обращению с радиоактивными отходами» (ФГУП «НО РАО»)

В 2015 г. филиалы по заявкам ФГУП «ГХК» и ОАО «СХК» произвели захоронение жидких радиоактивных отходов в объемах, предусмотренных договорами. При осуществлении процесса захоронения эксплуатационные параметры выдерживались в соответствии с нормами, установленными технологическими регламентами. Нестатных ситуаций, связанных с выходом из строя или разгерметизации основного технологического оборудования, не зарегистрировано.

АО «Далур»

В условиях подземного выщелачивания при замкнутом технологическом цикле образование жидких радиоактивных отходов исключается.

Образование твердых радиоактивных отходов в отчетный период отсутствует. Предприятием разработана и подготовлена система сбора, временного хранения и передачи радиоактивных отходов на захоронение в специализированную организацию по договору. Разработана Программа обеспечения качества при обращении с РАО. Ежегодно заключается договор на захоронение радиоактивных отходов со специализированной организацией (ФГУП «РосРО»).

ФГУП «ПО «Маяк»

Объемы сбросов ЖРО в поверхностный водоем-хранилище ЖРО (специальный промышленный водоем) В-6 и активность альфа- и бета-излучающих радионуклидов, поступающих со сбросными водами, не превышают установленных предприятием норм.
Работы по мониторингу безопасности гидротехнических сооружений водоемов проводились в полном объеме в соответствии с графиками. Дважды в год (в предпаводковый и послепаводковый периоды) проводились комиссионные осмотры гидротехнических сооружений с составлением плана мероприятий по устранению выявленных недостатков.

В 2015 г. нарушений регламентных уровней, установленных рекомендациями центральной заводской лаборатории от 21 июня 2011 г. № 2.5.2/4946, не было.

26 ноября 2015 г. акватория водоема В-9 (зеркало воды) ликвидирована — засыпана скальным грунтом, для обеспечения пористости массива использованы специальные строительные конструкции — блоки ПБ-1.

Превышений контрольных уровней и возникновения нештатных ситуаций в 2015 г. не зафиксировано.

На заводе 22 снижена величина выбросов в атмосферу по сравнению с прошлым годом:

- в 2014 г. — 4,6·10^3 Бк;
- в 2015 г. — 3,53·10^3 Бк, при контрольном уровне — 18,9·10^3 Бк.

В 2015 г. выбросы РВ ФГУП ПО «Маяк» составили величины ниже установленных контрольных уровней.

Непревышение контрольных уровней выбросов РВ в атмосферу в 2015 г. отражает стабильную устойчивую работу газоочистного оборудования заводов.

АО «УЭХК» и ООО «Новоуральский научно-конструкторский центр» (ООО «ННКЦ»)

В процессе эксплуатации ядерной установки ОАО «УЭХК» образуются газообразные и твердые радиоактивные отходы.

Газообразные РАО (ГРО) представляют собой выбросы альфа-активных радионуклидов уран-234, уран-235, уран-238. При обращении с ГРО предусматривается очистка воздуха, удаляемого из мест возможного их образования (вентиляционные укрытия, боксы, камеры, вытяжные шкафы и т.п.) и мест проведения ремонтно-профилактических работ. Очистное оборудование по обращению с ГРО проходит периодические испытания и техническое обслуживание в соответствии с инструкциями по эксплуатации. Своевременно проводится замена очистного оборудования, достигшего предельных значений эксплуатационных параметров. Действующие на комбинате методики предусматривают постоянный контроль эффективности работы газоочистки при обращении с ГРО.

Образующиеся в техпроцессе АО «УЭХК» твердые отходы ядерных материалов в зависимости от их вида подлежат или переработке в цехе 70, путем сжигания или прессования на участке переработки твердых отходов (УПТО), или переводу в категорию твердых РАО (ТРО) в соответствии со стандартом организации СТО 00.241–2014 «Порядок обращения с отходами ядерных материалов и твердыми радиоактивными отходами в АО «УЭХК».

Жидкие РАО в АО «УЭХК» не образуются. В процессе эксплуатации ядерной установки в подразделениях комбината образуются трапные воды и технологические растворы, содержащие соединения урана (при мойке и дезактивации помещений и оборудования, а также на ряде технологических переделов цехов 19 и 70). Переработка трапных вод и технологических растворов проводится в цехе 70.
Все жидкие и твердые урансодержащие отходы производства ООО «ННКЦ» не относятся к категории РАО. Для переработки эти отходы передаются в цех 70 АО «УЭХК». Предприятие не имеет собственных сбросов РВ в окружающую среду, все сбросы РВ осуществляются в канализацию АО «УЭХК», контролируются АО «УЭХК» и ООО «АНК-сервис».

Работы по контролю выбросов РВ и мониторингу окружающей среды для ООО «ННКЦ» проводят АО «УЭХК» и ООО «АНК-сервис». Согласно отчету от 28 ноября 2013 г. № 27/01/143-ВК «Радиационно-техническое обследование для оценки влияния существующих выбросов РВ ООО «ННКЦ» на окружающую среду» источники выбросов предприятия не подлежат государственному учету и нормированию.

АО «Чепецкий механический завод» (АО «ЧМЗ»)

РАО образуются в подразделениях предприятия в результате переработки сырья природного происхождения, в состав которого входят только естественные радионуклиды. Все РАО, образующиеся на предприятии, относятся к категории низкоактивных.

РАО, образовавшиеся в производственном цикле подразделений предприятия, передаются на действующие хранилища, а отработавшие свой срок закрытые радионуклидные источники в ОАО «РосРАО» в соответствии с требованиями.

Превышений пределов разрешенных выбросов за отчетный период не зафиксировано. Загрязнение оборудования и рабочих мест находится в допустимых пределах. Отчеты о состоянии радиационной безопасности представляются в соответствии с требованиями нормативных документов. Надзор за организацией и обеспечением радиационной безопасности организован в рамках лицензий Ростехнадзора.

Предприятие не производит сброса РВ в открытую гидросферу загрязненных радионуклидами вод и не имеет разрешения на сбросы РВ.

В целом обращение с РАО на ОАО «ЧМЗ» проводится в соответствии с требованиями норм и правил.

АО «ГНЦ НИИАР»

При эксплуатации исследовательских реакторов и проведении НИОКР в АО «ГНЦ НИИАР» образуются жидкие и твердые радиоактивные отходы различной активности и радиоактивные газоаэрозольные выбросы.

ЖРО низкого и среднего уровня активности подготавливаются и передаются на захоронение в подземные пласты-коллекторы опытно-промышленного полигона филиала «Димитровградский» ФГУП «НО РАО».

Обращение с РАО на всех объектах АО «ГНЦ НИИАР» ведется в соответствии с требованиями положений и инструкций, разработанных с учетом требований федеральных норм и правил. В АО «ГНЦ НИИАР» обращение с РАО производит специализированное подразделение — комплекс по обращению с РАО. В пункты хранения и в вентиляционный центр комплекса по обращению с РАО АО «ГНЦ НИИАР» поступают все виды РАО из всех подразделений института. С 2003 г. АО «ГНЦ НИИАР» эксплуатирует установку У-50, предназначенную для сжигания низкоактивных отходов с целью уменьшения объема низкоактивных ТРО. В настоящее время установка находится на реконструкции.

В комплексе по обращению с радиоактивными отходами (КОРО) разработаны мероприятия по минимизации РАО в КОРО. В рамках ФЦП «Обеспечение ядерной и радиационной безопасности на 2008 и на период до 2015 г.» проводились работы по модернизации объектов системы обращения с РАО и ОЯТ.

Превышений пределов разрешенных выбросов РВ в 2015 г. не зафиксировано.
АО «Радиевый институт им. В.Г. Хлюпина»

В 2015 г. нарушений условий безопасности при обращении с РАО не выявлено.
Сбор, временное хранение, передача, учет и контроль РАО осуществлялись в соответствии с требованиями федеральных норм и правил и условий действия лицензий.

Обращение с радиоактивными материалами при их транспортировании

Транспортирование радиоактивных материалов в Российской Федерации осуществляется всеми видами транспорта — автомобильным, железнодорожным, водным (морским) и воздушным. Требования безопасности регламентируются федеральными нормами и правилами в области использования атомной энергии «Правила безопасности при транспортировании радиоактивных материалов» (НП-053–04).

Деятельность по обращению с ядерными материалами при их транспортировании осуществляют 20 эксплуатирующих организаций и 25 организаций, выполняющих работы и предоставляющих услуги эксплуатирующим организациям.

Транспортирование ядерных материалов осуществляется в транспортных упаковочных комплектах, на которые выдаются сертификаты, подтверждающие соответствие конструкции и условий перевозки требованиям вышеуказанных НП-053–04. В 2015 г. специалистами Ростехнадзора было рассмотрено и согласовано 217 сертификатов (из них 98 сертификатов на перевозку ядерных материалов и 119 на перевозку радиоактивных веществ), включая дополнения и извещения о внесении изменений в сертификаты, а также 13 специальных требований на воздушную перевозку ядерных материалов и одно специальное условие на перевозку радиоактивных веществ.

Продолжались работы по возврату в Российскую Федерацию ядерных материалов, ранее поставленных за рубеж для обеспечения работы исследовательских ядерных установок, в соответствии с Соглашением от 27 мая 2004 г. между Правительством Российской Федерации и Правительством Соединенных Штатов Америки о сотрудничестве по ввозу в Российскую Федерацию ядерного топлива исследовательских реакторов, произведенного в Российской Федерации.

За отчетный период ввоз ОЯТ зарубежных АЭС производился в соответствии с постановлением Правительства Российской Федерации от 11 июля 2003 г. № 418 «О порядке ввоза в Российскую Федерацию облученных тепловыделяющих сборок ядерных реакторов» и на основании разрешений Ростехнадзора на ввоз и дальнейшую переработку облученных тепловыделяющих сборок. Прием ОЯТ осуществлялся в соответствии с ежегодно составляемым графиком и утвержденным Правительством Российской Федерации лимитом ввоза ОЯТ.

Ростехнадзор при осуществлении государственного контроля и надзора за безопасностью транспортирования радиоактивных материалов осуществляет лицензирование деятельности по проектированию, конструированию и изготовлению транспортных упаковочных комплектов. Соответствующие лицензии имеют 22 предприятия и организации.

Большое значение для безопасности транспортирования ядерных материалов имеет техническое состояние транспортных упаковочных комплектов. Имеющиеся транспортные упаковочные комплекты для перевозки облученных тепловыделяющих сборок ядерных энергетических реакторов типов ВВЭР-440 и ВВЭР-1000
в большинстве случаев были изготовлены в 70–80-х годах прошлого века. В настоя-
ящее время срок их эксплуатации продлен в установленном порядке. В 2015 г. про-
dолжались работы по проектированию транспортных упаковочных комплектов, от-
вечающих современным требованиям безопасности, для транспортирования отра-
bотавшего ядерного топлива энергетических реакторов.

В 2015 г. велась работа по подготовке новой редакции НП-053–04 на основе Пра-
vил безопасности перевозки радиоактивных материалов 2012 г. МАГАТЭ № SSR-6.

Меры, принятые в отчетном периоде эксплуатирующими организациями и Рос-
tехнадзором (в пределах компетенции), по повышению уровня ядерной и радиаци-
onной безопасности объектов ядерного топливного цикла

На поднадзорных предприятиях топливного цикла в 2015 г. продолжалась рабо-
tа по реализации планов мероприятий, направленных на совершенствование сис-
тем обеспечения ядерной и радиационной безопасности.

Ведется систематическая подготовка, повышение квалификации и переподго-
tовка персонала предприятий.

Радиационный контроль обеспечивает надежное определение дозы облучения
при всех ситуациях на объектах. Объем, периодичность и виды радиационного
контроля определены планами-графиками подразделений предприятий. Порядок
определения и учета индивидуальных доз облучения, радиационный контроль при
авариях установлены инструкциями предприятий.

Соблюдаются ограничения по облучению персонала, населения, сбросам и вы-
bросам радиоактивных веществ в окружающую среду.

Разработана необходимая документация по ликвидации последствий аварий. Спе-
cиальные аварийные бригады технически оснащены и подготовлены к действиям в
реальных условиях. Регулярно проводятся противоаварийные тренировки и учения.

Предприятиями ядерного топливного цикла разработаны и выполняются меро-
приятия по устранению замечаний экспертных заключений, выявленных при ли-
цензировании.

На предприятиях планомерно осуществляются мероприятия по продлению сро-
ка службы систем и элементов, важных для безопасности.

Проблемы ядерной и радиационной безопасности предприятий ЯТЦ и состояние
дел с их решением

К проблемам следует отнести старение зданий и сооружений ряда предприятий
отрасли, которые были введены в эксплуатацию в середине 40-х — начале 50-х го-
dов прошлого века. Отсутствие достаточного финансирования на осуществление их
ремонта, реконструкции и вывода из эксплуатации может в дальнейшем оказать не-
гативное влияние на обеспечение ядерной и радиационной безопасности при экс-
плуатации ядерных установок и обращении с ядерными материалами и радиоактив-
ными веществами.

Из-за отсутствия финансирования в 2015 г. не планировались и не проводились
работы по загрузке облученными блоками ДАВ-90 в ТУК-135 и транспортированию
для переработки на ФГУП «ПО Маяк».

Продолжающееся длительное хранение облученных ДАВ-90 в бассейне реактор-
nого завода ФГУП ФЯО «ГХК» вызывает озабоченность из-за увеличения количе-
ства дефектных блоков, а также выхода радионуклидов через коррозионные пора-
жения в воду бассейна.
Как и в предыдущие годы, на ФГУП ПО «Маяк» остаются проблемы обращения с РАО, в первую очередь связанные с несвоевременным вводом в эксплуатацию объектов капитального строительства, предназначенных для переработки ЖРО.

Проблемные вопросы, связанные с регулированием ядерной и радиационной безопасности на поднадзорных предприятиях ядерного топливного цикла

Отсутствие централизованной системы подготовки, переподготовки и повышения квалификации инспекторского состава по вопросам надзора за обеспечением безопасности в области использования атомной энергии существенно затрудняет обеспечение Ростехнадзора инспекторским составом необходимой квалификации; не решен вопрос по организации централизованных курсов повышения квалификации инспекторов МТУ ЯРБ по надзору за пожарной и технической безопасностью и вопросам осуществления строительного надзора.

Отсутствует нормативная база для регулирования пожарной безопасности на подземных объектах использования атомной энергии.

В качестве мер по повышению эффективности надзора МТУ ЯРБ предусматриваются, проводятся и предлагаются следующие мероприятия:

расширение процедур и методов обучения, обмена опытом работы для начальников отделов и инспекторского состава в целом в Ростехнадзоре (эта работа в настоящее время проводится в виде периодических кратковременных совещаний начальников отделов инспекций и руководителей МТУ ЯРБ, проводимых соответствующим отраслевым управлением центрального аппарата, а также в виде семинаров для старшего инспекторского состава и руководителей МТУ ЯРБ, организуемых ФБУ «НТЦ ЯРБ» Ростехнадзора);

совершенствование практики применения предупредительных мер, направленных на недопущение в поднадзорных организациях нарушений требований федеральных норм и правил;

повышение требовательности инспекторского состава к эксплуатирующим организациям, а также к руководству и должностным лицам организаций в выполнении требований обеспечения безопасности объектов использования атомной энергии.

В настоящее время возрастает актуальность проблемы обеспечения центрального аппарата и МТУ ЯРБ высококвалифицированными кадрами в связи с тем, что высококвалифицированные специалисты увольняются из-за неудовлетворенности размером заработной платы и отсутствия ряда социальных гарантий. Одним из источников комплектования новыми сотрудниками могли бы быть поднадзорные организации, но уровень заработной платы на этих предприятиях значительно выше заработной платы работников в системе Ростехнадзора. Проблемой является также отсутствие жилья и дошкольных учреждений для привлечения на государственную гражданскую службу молодых специалистов.

Оценка ядерной и радиационной безопасности на объектах ядерного топливного цикла

В 2015 г. на ОЯТЦ нарушений, категорируемых в соответствии с НП-047–11, не зафиксировано. Дозовые нагрузки на персонал не превышают установленных на ОЯТЦ контрольных уровней.

Таким образом, существующая система обеспечения ядерной и радиационной безопасности на ОЯТЦ за 2015 г. в основном соответствует требованиям действующих ФНП, УДЛ и оценивается как удовлетворительная.
2.2.3. Исследовательские ядерные установки

В 2015 г. Ростехнадзор осуществлял регулирование и надзор за ядерной и радиационной безопасностью 65 исследовательских ядерных установок (ИЯУ) в 17 эксплуатирующих организациях (ЭО) различных министерств и ведомств.

Сведения по видам деятельности на ИЯУ приведены в табл. 15.

<table>
<thead>
<tr>
<th>Таблица 15</th>
<th>Сведения по видам деятельности</th>
</tr>
</thead>
<tbody>
<tr>
<td>Тип ИЯУ</td>
<td>Распределение типов ИЯУ по виду деятельности</td>
</tr>
<tr>
<td></td>
<td>Эксплуатация (из них в режиме окончательного останова)</td>
</tr>
<tr>
<td>Исследовательские реакторы</td>
<td>23 (2)</td>
</tr>
<tr>
<td>Критические стенды</td>
<td>24</td>
</tr>
<tr>
<td>Подкритические стенды</td>
<td>9</td>
</tr>
<tr>
<td>Количество ИЯУ по виду деятельности</td>
<td>56</td>
</tr>
<tr>
<td>Всего ИЯУ: 65</td>
<td></td>
</tr>
</tbody>
</table>

В 2015 г. осуществлялся надзор за соблюдением норм и правил, условий действия лицензий в 174 организациях, осуществляющих деятельность в области использования атомной энергии в том числе:

42 конструкторских организациях;
23 заводах-изготовителях.

В 2015 г. центральным аппаратом Ростехнадзора было выдано эксплуатирующим организациям 22 лицензии (в том числе 3 лицензии переоформлены в связи с изменением наименования эксплуатирующей организации), сведения о которых приведены в табл. 16 (здесь и далее в скобках указаны данные за 2014 г.).

<table>
<thead>
<tr>
<th>Таблица 16</th>
<th>Сведения о выдаче лицензий центральным аппаратом Ростехнадзора</th>
</tr>
</thead>
<tbody>
<tr>
<td>Вид деятельности</td>
<td>Количество лицензий</td>
</tr>
<tr>
<td>Размещение ИЯУ</td>
<td>0 (1)</td>
</tr>
<tr>
<td>Проектирование и конструирование ИЯУ</td>
<td>2 (0)</td>
</tr>
<tr>
<td>Сооружение ИЯУ</td>
<td>1 (0)</td>
</tr>
<tr>
<td>Эксплуатация ИЯУ (комплексов с ИЯУ)</td>
<td>12 (7)</td>
</tr>
<tr>
<td>Вывод из эксплуатации ИЯУ</td>
<td>2 (1)</td>
</tr>
<tr>
<td>Использование ЯМ при проведении НИР и ОКР</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Эксплуатация ПХ ЯМ и ОЯТ</td>
<td>0 (4)</td>
</tr>
<tr>
<td>Эксплуатация стационарного сооружения с ЯМ</td>
<td>0 (1)</td>
</tr>
<tr>
<td>Проведение экспертизы безопасности</td>
<td>1 (0)</td>
</tr>
<tr>
<td>Переоформление</td>
<td>3 (2)</td>
</tr>
<tr>
<td>Итого: 22 (16)</td>
<td></td>
</tr>
</tbody>
</table>

Межрегиональными территориальными управлениями по надзору за ядерной и радиационной безопасностью (МТУ ЯРБ) выдано 35 (31) лицензий на виды деятельности на ИЯУ.

Ростехнадзор осуществлял выдачу разрешений на право ведения работ в области использования атомной энергии работникам (персоналу) ИЯУ.
За отчетный период разрешения получили:
в центральном аппарате — 6 (11) руководящих работников ИЯУ;
в МТУ ЯРБ — 140 (136) работников ИЯУ.

Инспекционная деятельность
За отчетный период МТУ ЯРБ проведено 193 (156) инспекций состояния ядерной, радиационной и технической безопасности ИЯУ.
В ходе инспекций выявлены 185 (224) нарушений требований федеральных норм и правил в области использования атомной энергии.
Общая сумма наложенных МТУ ЯРБ административных штрафов составляет 2 100 (780) тыс. руб.
Во втором полугодии 2015 г. центральным аппаратом Ростехнадзора организована и проведена с участием МТУ ЯРБ одна плановая выездная проверка состояния ядерной и радиационной безопасности и выполнения условий действия лицензии на ИЯР ВВР-М ФГБУ «Петербургский институт ядерной физики им. Б.П. Константинова», г. Гатчина.
Результаты инспекционной деятельности МТУ ЯРБ на ИЯУ в 2015 г. приведены в табл. 17.

Таблица 17

<table>
<thead>
<tr>
<th>Показатель/МТУ ЯРБ</th>
<th>ВМТУ</th>
<th>СЕМТУ</th>
<th>УМТУ</th>
<th>ЦМТУ</th>
<th>СДМТУ</th>
<th>Всего</th>
</tr>
</thead>
<tbody>
<tr>
<td>Общее количество проведенных проверок (инспекций)</td>
<td>51 (39)</td>
<td>36 (22)</td>
<td>23 (20)</td>
<td>68 (61)</td>
<td>15 (14)</td>
<td>193 (156)</td>
</tr>
<tr>
<td>Количество выявленных нарушений</td>
<td>81 (50)</td>
<td>19 (31)</td>
<td>11 (6)</td>
<td>65 (119)</td>
<td>9 (18)</td>
<td>185 (224)</td>
</tr>
<tr>
<td>Общее количество административных наказаний, наложенных по итогам проверок</td>
<td>7 (1)</td>
<td>2 (2)</td>
<td>1 (4)</td>
<td>5 (1)</td>
<td>5 (3)</td>
<td>20 (11)</td>
</tr>
<tr>
<td>Сумма наложенных штрафов, тыс. руб.</td>
<td>130 (40)</td>
<td>880 (20)</td>
<td>20 (120)</td>
<td>510 (570)</td>
<td>560 (30)</td>
<td>2100 (780)</td>
</tr>
</tbody>
</table>

Проблемным вопросом обеспечения регулирования безопасности ИЯУ остается низкая укомплектованность квалифицированным инспекторским составом Центрального, Северо-Европейского, Волжского МТУ ЯРБ, МТУ ЯРБ Сибири и Дальнего Востока из-за старения кадров и их утечки. Основными причинами сложившегося положения дел является низкий уровень заработной платы, а также недостатки в системе повышения квалификации инспекторов по направлению регулирования безопасности ИЯУ.

Нарушения в работе ИЯУ
За отчетный период на поднадзорных ИЯУ ядерных, радиационных, технических аварий не зафиксировано. В 2015 г. зафиксировано 12 (в 2014 г. — 5) нарушений в работе ИЯУ, классифицируемых в соответствии с «Положением о порядке расследования и учета нарушений в работе исследовательских ядерных установок» (НП-027—10). Все нарушения в работе ИЯУ классифицированы по шкале INES нулевым уровнем. Нарушений пределов и условий безопасной эксплуатации не было.
Динамика нарушений в работе ИЯУ в 2008–2015 гг., подлежащих учету в соответствии с НП-027–10, представлена на рис. 5.

Рис. 5. Динамика нарушений в работе ИЯУ в 2008–2015 гг., подлежащих учету в соответствии с НП-027–10

Распределение нарушений в работе ИЯУ по МТУ и субъектам федерации приведено в табл. 18.

Таблица 18

<table>
<thead>
<tr>
<th>МТУ ЯРБ</th>
<th>Субъект федерации</th>
<th>2015 г. (2014 г.)</th>
<th>Количество нарушений</th>
<th>Всего по МТУ ЯРБ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Центральное МТУ ЯРБ</td>
<td>г. Москва</td>
<td>1 (0)</td>
<td>4 (0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Московская область</td>
<td>2 (0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Калужская область</td>
<td>1 (0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Северо-Европейское МТУ ЯРБ</td>
<td>г. Санкт-Петербург</td>
<td>0 (0)</td>
<td>2 (1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ленинградская область</td>
<td>2 (1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Волжское МТУ ЯРБ</td>
<td>Ульяновская область</td>
<td>4 (4)</td>
<td>4 (4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Нижегородская область</td>
<td>0 (0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>УМТУ</td>
<td>Свердловская область</td>
<td>2 (0)</td>
<td>2 (0)</td>
<td></td>
</tr>
<tr>
<td>МТУСДВ</td>
<td>г. Томск</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td></td>
</tr>
<tr>
<td>Итого:</td>
<td>12 (5)</td>
<td>12 (5)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Распределение нарушений в работе ИЯУ по эксплуатирующим организациям и категориям (в соответствии с НП-027–10) приведено в табл. 19.

Таблица 19

<table>
<thead>
<tr>
<th>Эксплуатирующая организация</th>
<th>ИЯУ</th>
<th>Категория нарушения</th>
<th>Всего</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>П102</td>
<td>П105</td>
</tr>
<tr>
<td>ОИЯИ</td>
<td>ИБР-2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>АО «ГНЦ НИИАР»</td>
<td>РБТ-6</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
В 2015 г. основная часть нарушений категории П08 составляет 33,3 % от общего количества нарушений.

Нарушение категории П02 обусловлено недостатками монтажа оборудования системы перекачки ЖРО, слабой подготовкой оперативного персонала, допустившего нарушения оперативных инструкций.

Нарушения категории П05 обусловлены недостатками процедур технического обслуживания и ремонта оборудования, важного для безопасности.

Нарушения категории П07 обусловлены недостатками монтажа оборудования системы перекачки ЖРО, слабой подготовкой оперативного персонала, допустившего нарушения оперативных инструкций.

Нарушения категории П08 обусловлены недостаточной надежностью элементов систем, важных для безопасности, и недостатками процедур технического обслуживания и ремонта оборудования.

Нарушения категории П09 обусловлены отказами системы электроснабжения исследовательских ядерных установок.

Перечисленные нарушения в работе ИЯУ не приводят к превышению пределов безопасной эксплуатации.

В 2015 г. произошло одно нарушение из-за ошибок персонала. На ИЯУ ВВР-М (ФГБУ ПИЯФ) из-за слабой подготовки оперативного персонала и недостатков монтажа оборудования системы перекачки ЖРО произошло загрязнение территории. Нарушение классифицируется категорией П02 (в 2014 г. не было нарушений из-за ошибочных действий персонала).

Основной причиной нарушений в работе ИЯУ являются недостатки в системе контроля эксплуатирующих организаций за соблюдением технологической дисциплины, своевременной реализацией планов по устранению нарушений требований федеральных норм и правил в области использования атомной энергии и условий действия лицензий.

По всем нарушениям в работе ИЯУ в установленном порядке проведены расследования и учета нарушений в работе ИЯУ в ЭО в основном подтвердили выполнение ими требований, установленных документом НП-02–10.
Радиоактивные выбросы и сбросы
На ИЯУ, поднадзорных Ростехнадзору, выбросов и сбросов радиоактивных веществ в окружающую среду в количествах, превышающих установленные значения, не зафиксировано, радиационная обстановка не превышала естественного фона.

Дозовые нагрузки на основных и привлекаемых работников (персонал)
Случаев переоблучения персонала при нарушениях не зафиксировано.
Дозовые нагрузки штатного и прикомандированного персонала ниже пределов установленных на предприятиях контрольных уровней.

Сооружение ИЯУ
В настоящее время в стадии сооружения находятся ИЯУ:
- РК ПИК ФГБУ «Петербургский институт ядерной физики им. Б.П. Константинова», г. Гатчина;
- ИЯР ИРВ-М2 ФГУП «Научно-исследовательский институт приборов», г. Лыткарино;
- ИЯР МБИР АО «Государственный научный центр — Научно-исследовательский институт атомных реакторов», г. Димитровград.

Вывод ИЯУ и ПХ ЯМ из эксплуатации
Осуществляется надзор за работами по выводу из эксплуатации ИЯУ, а также ПХ ЯМ и ОЯТ, расположенных на территории ЭО.
В стадии вывода из эксплуатации находятся 6 ИЯУ.
Исследовательские реакторы: ТВР (ФГУП «ГНЦ РФ-ИТЭФ»); АМ (ФГУП «ГНЦ РФ-ФЭИ»); АСТ-1 (АО «ГНЦ НИИАР»); МР (НИЦ КИ).
Критические стенды: «УГ», «Грог» (НИЦ КИ).

Обращение с ядерным топливом и радиоактивными отходами
Обращение со свежим и отработавшим ядерным топливом, радиоактивными отходами в ЭО в основном соответствует требованиям норм и правил в области использования атомной энергии.
Одной из проблем обеспечения безопасности является проблема вывоза отработавшего ядерного топлива и радиоактивных отходов с территорий ЭО и их дальнейшей утилизации.

2.2.4. Ядерные энергетические установки судов и объекты их жизнеобеспечения
Общая характеристика ядерных энергетических установок судов (ЯЭУ)
В 2015 г. Ростехнадзор осуществлял государственное регулирование ядерной и радиационной безопасности при использовании атомной энергии на судах, включая объекты их жизнеобеспечения, а также в организациях, выполняющих работы и предоставляющих услуги в области использования атомной энергии.
В отчетном периоде поднадзорным организациям выдано 13 лицензий (в 2014 г. — 16 лицензий).
Под государственным надзором находились 10 атомных судов и 5 судов атомно-технологического обслуживания (далее — суда АТО) ФГУП «Атомфлот» Государственной корпорации по атомной энергии «Росатом». Состояние атомных судов и судов АТО на 31 января 2015 г. приведено в табл. 20-21.
Таблица 20

Техническое состояние атомных судов

<table>
<thead>
<tr>
<th>Наименование судна</th>
<th>Проект</th>
<th>Год постройки</th>
<th>Тип АППУ</th>
<th>Число реакторов</th>
<th>Техническое состояние</th>
</tr>
</thead>
<tbody>
<tr>
<td>А/л «Ленин»</td>
<td>92-М</td>
<td>1959</td>
<td>ОК-900</td>
<td>2</td>
<td>Выведен из эксплуатации. Активные зоны выгружены. Ошвартован у причала морского вокзала г. Мурманска как музей атомного ледокольного флота</td>
</tr>
<tr>
<td>А/л «Арктика»</td>
<td>1052-1</td>
<td>1975</td>
<td>ОК-900А</td>
<td>2</td>
<td>Ведутся работы по переводу в режим окончательного останова ЯЭУ. Активные зоны выгружены</td>
</tr>
<tr>
<td>А/л «Сибирь»</td>
<td>1052-2</td>
<td>1977</td>
<td>ОК-900А</td>
<td>2</td>
<td>В режиме окончательного останова ЯЭУ. Активные зоны выгружены</td>
</tr>
<tr>
<td>А/л «Россия»</td>
<td>10521-1</td>
<td>1985</td>
<td>ОК-900А</td>
<td>2</td>
<td>В режиме окончательного останова ЯЭУ. Активные зоны выгружены</td>
</tr>
<tr>
<td>А/л «Советский Союз»</td>
<td>10521-2</td>
<td>1989</td>
<td>ОК-900А</td>
<td>2</td>
<td>В эксплуатационном резерве. Активные зоны выгружены</td>
</tr>
<tr>
<td>А/л «Ямал»</td>
<td>10521-3</td>
<td>1992</td>
<td>ОК-900А</td>
<td>2</td>
<td>В эксплуатации</td>
</tr>
<tr>
<td>А/л «Таймыр»</td>
<td>10580-1</td>
<td>1989</td>
<td>КЛТ-40М</td>
<td>1</td>
<td>В эксплуатации</td>
</tr>
<tr>
<td>А/л «Вайгач»</td>
<td>10580-2</td>
<td>1990</td>
<td>КЛТ-40М</td>
<td>1</td>
<td>В эксплуатации</td>
</tr>
<tr>
<td>А/л «Севморпуть»</td>
<td>10081</td>
<td>1988</td>
<td>КЛТ-40</td>
<td>1</td>
<td>В эксплуатации</td>
</tr>
<tr>
<td>А/л «50 лет Победы»</td>
<td>10521-4</td>
<td>2007</td>
<td>ОК-900А</td>
<td>2</td>
<td>В эксплуатации</td>
</tr>
</tbody>
</table>

Таблица 21

Техническое состояние судов АТО

<table>
<thead>
<tr>
<th>Наименование судна</th>
<th>Назначение судна</th>
<th>Техническое состояние</th>
</tr>
</thead>
<tbody>
<tr>
<td>Плавтехбаза (птб) «Имандра»</td>
<td>Хранение свежего и отработавшего ядерного топлива (ОЯТ)</td>
<td>В эксплуатации</td>
</tr>
<tr>
<td>Птб «Лотта»</td>
<td>Хранение ОЯТ</td>
<td>В эксплуатации</td>
</tr>
<tr>
<td>Птб «Лепсе»</td>
<td>Хранение ОЯТ и РАО</td>
<td>Переведена в филиал АО «Центр судостроения «Звезdochka» судоремонтный завод «Нерпа». Ведутся работы по утилизации птб</td>
</tr>
<tr>
<td>Пароход «Володарский»</td>
<td>Временное хранение ТРО</td>
<td>Окончены работы по утилизации. Фактическое состояние судна соответствует конечному состоянию, определенному в программе и проекте вывода из эксплуатации. Принято решение № 154 от 05.05.2015 о прекращении действия лицензии Ростехнадзора от 07.06.2013 № CE-04-201-3378 на вывод из эксплуатации радиационного источника ненавозного судна пароход «Володарский». Объект снят с надзора</td>
</tr>
</tbody>
</table>

© Оформление. ЗАО НТЦ ПБ, 2016
ФГУП «Атомфлот» осуществляет эксплуатацию, а также обеспечивает базирование атомных судов и судов АТО, ремонт оборудования ЯЭУ, хранение и переработку радиоактивных отходов (РАО), проведение транспортно-погрузочных и технологических операций с ядерным топливом.

Состояние ядерной и радиационной безопасности в ФГУП «Атомфлот» соответствует требованиям федеральных норм и правил в области использования атомной энергии.

Под государственным надзором находились судостроительные и судоремонтные заводы: ООО «Балтийский завод-Судостроение», ПАО «Амурский судостроительный завод» и его филиал — завод судового оборудования «Восток» и другие предприятия, выполняющие работы и оказывающие услуги в области использования ядерной энергии. Всего под надзором находилось 19 организаций, осуществляющих деятельность в области использования атомной энергии.

На предприятиях судостроительной отрасли уровень обеспечения ядерной и радиационной безопасности соответствует требованиям федеральных норм и правил в области использования атомной энергии.

Под государственным надзором находились комплексы стендов-прототипов корабельных ядерных энергетических установок в АО «ГНЦ РФ — ФЭИ». Состояние стендов-прототипов на 31 декабря 2015 г. приведено в табл. 22.

<table>
<thead>
<tr>
<th>Наименование судна</th>
<th>Назначение судна</th>
<th>Техническое состояние</th>
</tr>
</thead>
<tbody>
<tr>
<td>Спецтанкер «Серебрянка»</td>
<td>Транспортирование ОЯТ в контейнерах, временное хранение ЖРО</td>
<td>В эксплуатации</td>
</tr>
</tbody>
</table>

Таблица 22

<table>
<thead>
<tr>
<th>Наименование стендов-прототипов</th>
<th>Эксплуатирующая организация</th>
<th>Техническое состояние</th>
</tr>
</thead>
<tbody>
<tr>
<td>27/ВМ ФЭИ</td>
<td>Вывод из эксплуатации</td>
<td></td>
</tr>
<tr>
<td>27/ВТ ФЭИ</td>
<td>Вывод из эксплуатации</td>
<td></td>
</tr>
</tbody>
</table>

Нарушений федеральных норм и правил в области использования атомной энергии при эксплуатации стендов-прототипов не выявлено.

По выявленным нарушениям выдавались предписания на их устранение, проводилось заслушивание руководителей структурных подразделений поднадзорных организаций. Невыполненных в установленные сроки предписаний в отчетном периоде не было. Причинами выявленных нарушений являются недисциплинированность и недобросовестное исполнение обязанностей персоналом, слабый контроль со стороны руководства.
Нарушения в работе

На поднадзорных объектах использования атомной энергии аварий и аварийных происшествий в 2015 г. и в 2014 г. не было.

Анализ эксплуатационных происшествий показывает, что основную часть нарушений (13 из 15) составляют течи парогенераторов типа ПГ-28.

Основные предполагаемые причины течей — технологические дефекты трубной системы парогенераторов типа ПГ-28. Принимаемые меры по устранению дефектов — глушение негерметичных секций, а также ремонт дефектных узлов силами ФГУП «Атомфлот».

ФГУП «Атомфлот» в соответствии с «Положением о порядке расследования и учета нарушений судов с ядерными энергетическими установками и радиационными источниками» (НП-088–11) по каждому нарушению разрабатывает план мероприятий по устранению причин нарушения и предотвращению его повторения с учетом рекомендаций комиссии, изложенных в отчете о расследовании нарушений. Контроль выполнения мероприятий плана осуществляется Ростехнадзором в ходе проведения проверок при осуществлении постоянного государственного надзора.

Зарегистрированные эксплуатационные происшествия к превышению пределов безопасной эксплуатации не привели и были устранены в соответствии с требованиями инструкций по эксплуатации. Радиационная обстановка при всех происшествиях оставалась в пределах нормы.

Дозовые нагрузки

Обеспечение радиационной безопасности и организация радиационного контроля в поднадзорных организациях осуществляются в соответствии с требованиями нормативных документов. В течение отчетного периода случаев переоблучения персонала не зафиксировано. Дозовые нагрузки штатного и привлекаемого персонала ниже пределов контрольных уровней. Безопасность персонала и населения с точки зрения воздействия радиационных факторов обеспечивается.

Вывод из эксплуатации

Ядерные энергетические установки судов из эксплуатации в отчетном периоде не выводились.

Обращение с радиоактивными отходами (РАО) и источниками ионизирующих излучений (ИИИ)

Обращение с РАО и ИИИ осуществлялось в соответствии с требованиями нормативных документов по установленной технологической схеме с соблюдением мер радиационной безопасности.
Годовой отчет о деятельности Федеральной службы

Несанкционированных выбросов и сбросов РАО не выявлено. На объектах и прилегающих к ним территориях радиоактивного загрязнения не зафиксировано. Степень готовности поднадзорных организаций и их соответствующих подразделений позволяет обеспечить эффективное проведение мероприятий по ликвидации радиационных аварий и их последствий.

Анализ деятельности эксплуатирующих организаций по повышению безопасности ядерных энергетических установок судов

На основании анализа и предложений проектантов эксплуатирующей организации оформлены для каждого атомного судна решения о внедрении мероприятий по повышению уровня безопасности реакторных установок, в которых определены исполнители и сроки выполнения запланированных мероприятий.

В 2015 г. все запланированные мероприятия по повышению безопасности атомных ледоколов выполнены.

В поднадзорных организациях уровень обеспечения ядерной и радиационной безопасности соответствует требованиям федеральных норм и правил в области использования атомной энергии.

2.2.5 Радиационно опасные объекты

В сфере государственного надзора находятся:

а) медицинские, научные, исследовательские лаборатории и другие объекты, на которых ведутся работы с радиоактивными веществами (РВ);

б) комплексы, установки, аппараты, оборудование и изделия с закрытыми радионуклидными источниками (ЗРнИ), в том числе:

технологические и медицинские облучательные установки;

defektoskopy;

радиоизотопные приборы и другие источники;

радиоизотопные термэлектрические генераторы (РИТЭГ);

в) пункты хранения радиоактивных веществ, хранилища радиоактивных отходов (РАО), в том числе:

специализированные пункты хранения, хранилища РАО, расположенные в ФГУП «РАДОН», в отделениях и филиалах ФГУП «РосРАО», пункты глубинного захоронения жидких радиоактивных отходов ФГУП «НО РАО»;

неспециализированные пункты хранения, хранилища, расположенные на объектах использования атомной энергии;

хранилища, предназначенные для хранения отходов с повышенным содержанием радионуклидов природного происхождения.

Все радиационные объекты, поднадзорные межрегиональным территориальным управлением по надзору за ядерной и радиационной безопасностью (МТУ ЯРБ),
классифицированы по категориям потенциальной радиационной опасности в соответствии с разделом 3.1 ОСПОРБ–99/2010.

По данным годовых отчетов МТУ ЯРБ:

а) организации, эксплуатирующие радиационные объекты I категории по потенциальной радиационной опасности, отсутствуют;

б) организации, эксплуатирующие радиационные объекты II категории по потенциальной радиационной опасности, расположены на территориях, поднадзорных Центральному, Волжскому и Северо-Европейскому МТУ ЯРБ. Такими признаны 8 организаций, в основном филиалы и отделения филиалов ФГУП «РосРАО»;

в) 1666 организаций эксплуатируют объекты III и IV категорий по потенциальной радиационной опасности. Общее количество таких объектов около 3200.

На стационарных радиационных источниках (РИС) ведутся работы с радиоактивными веществами (РВ) и (или) с закрытыми радионуклидными источниками (ЗРнИ).

Радиационные источники, содержащие РВ активностью до 1,0·10^{14} Бк, включают:
радиоактивные вещества с суммарной активностью, соответствующей работам I, II и III класса по ОСПОРБ–99/2010 (P-32, S-35, C-14, Ra-226, Zr-95 и др.);
наборы реактивов для радиоиммунологического микроанализа и радиофармпрепараты (РФП), используемые в медицинских учреждениях.

Радиационные источники, содержащие ЗРнИ с активностью до 4·10^{17} Бк, включают:
мощные облучательные технологические гамма-установки типа РВ-1200, К-20000 (60000, 120000, 200000), «Стерилизатор», ИГУР-1, «Исследователь», МРХ-g-100 (20, 25М), «Пинцет», «Панорама», «Тюльпан», ГОТ, ИГУР-1, ГП-2, ГУЖМП-1, «Theratron Equinox 100» и другие с неподвижным и подвижным облучателем и с различным количеством используемых закрытых источников на основе радионуклида Со-60 с суммарной активностью до 3,0·10^{15} Бк;
различные модификации радиационно-терапевтических медицинских установок типа «Луч-1», «Арат-Р» (С, В, БУ, В Т, ВЗ, В5), «Рокус-М (АМ)», Teratron Elite 80, Multisours YDR, TERAGAM K-01 с разным количеством используемых закрытых источников на основе радионуклида Со-60 с суммарной активностью до 5,4·10^{14} Бк;
переносные гамма-дефектоскопы типа «Гаммарид», РИД и «Стапель-5М» с источниками ГИИД-3 (4, 5, 6), томографы (дефектоскопы) типа CBS LBD на основе Ir-192, Co-60, Cs-137 и Tm-170 с активностью источников до 2,0·10^{13} Бк;
радиоизотопные приборы (РИП) с источниками на основе изотопов Pu-238-Be-9, Am-241-Be-9, Co-60, Cs-137, Pu-238, Am-241 (это приборы технологического контроля, включающие гамма-уровнемеры, плотномеры, расходомеры, толщиномеры, нейтрализаторы статического электричества, сигнализаторы обледенения, скважинные приборы и датчики дозиметрической аппаратуры с встроенными источниками). Активность изотопов в источниках указанных приборов составляет до 3,7·10^{11} Бк;
РИТЭГ, содержащие радионуклидные источники тепла на основе Sr-90.

На конец 2015 г. под надзором МТУ ЯРБ находились 1928 организаций. Распределение по МТУ ЯРБ общего числа поднадзорных организаций представлено в табл. 23.
Годовой отчет о деятельности Федеральной службы

Таблица 23

<table>
<thead>
<tr>
<th>ВМТУ</th>
<th>ДМТУ</th>
<th>СЕМТУ</th>
<th>УМТУ</th>
<th>ЦМТУ</th>
<th>МТУ Сибири и Дальнего Востока</th>
<th>Всего</th>
</tr>
</thead>
<tbody>
<tr>
<td>321</td>
<td>168</td>
<td>252</td>
<td>236</td>
<td>520</td>
<td>431</td>
<td>1928</td>
</tr>
</tbody>
</table>

Общее количество действующих в 2015 г. лицензий составляет 1582. В табл. 24 приведено распределение количества действующих лицензий, в процентном соотношении от общего числа действующих лицензий, по видам деятельности на которые они выданы.

Таблица 24

<table>
<thead>
<tr>
<th>Вид деятельности</th>
<th>Проектирование РИ, ПХ и конструирование РИ</th>
<th>Строительство РИ, ПХ</th>
<th>Изготовление РИ</th>
<th>Конструирование и изготовление оборудования для РИ и ПХ</th>
<th>Эксплуатация РИ, ПХ (включая ввод и вывод из эксплуатации, в части поставки РИ, РНИ, техниче- ского обслуживания и ремонта РИ, ПХ и т.д.)</th>
<th>Обращение с РВ (РАО) при производстве, использование и хранении</th>
<th>Использование РВ (РАО) при проведении НИР и ОКР</th>
<th>Экспертиза безопасности</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1,8 %</td>
<td>4,5 %</td>
<td>—</td>
<td>2,1 %</td>
<td>75,4 %</td>
<td>8,9 %</td>
<td>2,1 %</td>
<td>4,4 %</td>
</tr>
</tbody>
</table>

В рамках государственного регулирования безопасности в 2015 г. на деятельность радиационно опасных объектов Ростехнадзором было выдано 446 лицензий (в 2014 г. — 325) на право деятельности в области использования атомной энергии, в том числе центральным аппаратом Ростехнадзора — 34 лицензии (в 2014 г. — 13).

Около половины поднадзорных организаций составляют промышленные предприятия и компании топливно-энергетического комплекса, порядка 15 % — научно-исследовательские организации, около 20 % составляют медицинские учреждения, остальные — это организации, выполняющие работы и оказывающие услуги для эксплуатирующих организаций, и организации, относящиеся к учреждениям сферы образования, транспортным и сельскохозяйственным организациям, воинские части и организации Минобороны России.

В число поднадзорных организаций входят также 72 региональных и ведомственных информационно-аналитических центров (РИАЦ, ВИАЦ) системы государственного учета и контроля радиоактивных веществ и РАО.

70 % поднадзорных организаций имеют ведомственную принадлежность: Госкорпорация «Росатом», Минобороны России, Министерство здравоохранения РФ, МЧС России, ФТС России, Министерство образования РФ и др.

В табл. 25 приведено распределение радиационно опасных объектов (стационарных радиационных источников и пунктов хранения) по МТУ ЯРБ.
Количество радиационно опасных объектов и пунктов хранения

<table>
<thead>
<tr>
<th>Количество</th>
<th>МТУ ЯРБ</th>
<th>Всего</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ВМТУ</td>
<td>ДМТУ</td>
</tr>
<tr>
<td>РИС</td>
<td>641</td>
<td>267</td>
</tr>
<tr>
<td>ПХ</td>
<td>237</td>
<td>61</td>
</tr>
</tbody>
</table>

В 2015 г. количество организаций, впервые начавших деятельность в области использования атомной энергии, составило 72, прекративших деятельность в области использования атомной энергии — 96 (в 2014 г. — 75 и 144 соответственно) (табл. 26). Выход организаций из-под надзора связан с отказом от деятельности по различным причинам, в частности с отсутствием финансовых возможностей осуществлять работы с использованием РИ либо с переходом на другие принципы контроля технологических процессов.

Распределение организаций по МТУ ЯРБ

<table>
<thead>
<tr>
<th></th>
<th>ВМТУ</th>
<th>ДМТУ</th>
<th>СЕМТУ</th>
<th>УМТУ</th>
<th>ЦМТУ</th>
<th>МТУ Сибири и Дальнего Востока</th>
<th>Всего</th>
</tr>
</thead>
<tbody>
<tr>
<td>Количество организаций, впервые начавших деятельность в области использования атомной энергии</td>
<td>—</td>
<td>14</td>
<td>—</td>
<td>16</td>
<td>—</td>
<td>42</td>
<td>72</td>
</tr>
<tr>
<td>Количество организаций, прекративших деятельность в области использования атомной энергии</td>
<td>20</td>
<td>21</td>
<td>13</td>
<td>20</td>
<td>—</td>
<td>22</td>
<td>96</td>
</tr>
</tbody>
</table>

В Российской Федерации в соответствии с требованиями федеральных норм и правил НП-038–11 осуществляется категорирование радионуклидных источников по радиационной опасности.

В составе радиационных источников поднадзорными организациями эксплуатируются 80 586 ЗРнИ I–V категорий по радиационной опасности.

В табл. 27 приведены данные по количеству ЗРнИ каждой категории по всем МТУ ЯРБ.

Распределение ЗРнИ по категориям и МТУ ЯРБ

<table>
<thead>
<tr>
<th></th>
<th>МТУ ЯРБ</th>
<th>Всего</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ВМТУ</td>
<td>ДМТУ</td>
</tr>
<tr>
<td>Количество ЗРнИ всего, шт., в том числе:</td>
<td>9307</td>
<td>2076</td>
</tr>
<tr>
<td>ЗРнИ I категории</td>
<td>513</td>
<td>31</td>
</tr>
<tr>
<td>ЗРнИ II категории</td>
<td>123</td>
<td>164</td>
</tr>
<tr>
<td>ЗРнИ III категории</td>
<td>1118</td>
<td>51</td>
</tr>
<tr>
<td>ЗРнИ IV категории</td>
<td>1825</td>
<td>272</td>
</tr>
<tr>
<td>ЗРнИ V категории</td>
<td>5728</td>
<td>1558</td>
</tr>
</tbody>
</table>
Суммарное количество ЗРнИ, деятельность по эксплуатации которых подлежит лицензированию, составляет порядка 8,7 тыс.

Суммарное количество ЗРнИ IV и V категорий, деятельность по эксплуатации которых требует регистрации, составляет около 72 тыс.

Одновременно продолжается работа по внесению в реестр организаций, осуществляющих эксплуатацию РИ, содержащих в своем составе только ЗРнИ IV и V категорий по радиационной опасности. В 2015 г. зарегистрировано 516 таких организаций.

В табл. 28 представлено распределение по МТУ ЯРБ поднадзорных организаций, осуществляющих эксплуатацию РИ, содержащих в своем составе только ЗРнИ IV и V категорий по радиационной опасности.

Таблица 28

<table>
<thead>
<tr>
<th>ВМТУ</th>
<th>ДМТУ</th>
<th>СЕМТУ</th>
<th>УМТУ</th>
<th>ЦМТУ</th>
<th>МТУ Сибири и Дальнего Востока</th>
<th>Всего</th>
</tr>
</thead>
<tbody>
<tr>
<td>119</td>
<td>50</td>
<td>54</td>
<td>37</td>
<td>84</td>
<td>172</td>
<td>516</td>
</tr>
</tbody>
</table>

На территории Российской Федерации организациями, имеющими наиболее потенциально опасные радиационные объекты, являются:

онкологические диспансеры Министерства здравоохранения и социального развития Российской Федерации, эксплуатирующие радиационно-терапевтические медицинские установки различной модификации, например, типа «Агат» (Р, Р1, С, В, ВУ, В Т, В3, В5), «Рокус» (М, МУ), «Селектрон» и др.;

организации, применяющие в технологических процессах методы неразрушающего контроля (гамма-дефектоскопы типа «Гаммарид» 25, 170/400, 192/120, «Стапель5М», РИД-21);

организации, проводящие полевые геофизические исследования с использованием радионуклидных источников;

организации и их подразделения, в ведении которых имеются необслуживающие радиоизотопные устройства, в том числе РИТЭГ, имеющие в своем составе РИТ с радионуклидом Sr-90. Активность каждого РИТ составляет от 4,81·10^{14} Бк до 4,55·10^{15} Бк (в зависимости от типа РИТЭГ), а в РИТЭГ может находиться от 1 до 6 РИТ.

Кроме перечисленных радиационных объектов потенциально опасными являются также объекты нефтедобывающих организаций, на которых осуществляется хранение в открытом виде нефтепромыслового оборудования с отложениями солей природных радионуклидов Ra-226, Ra-228, U-238, Th-232 и К-40.

Общая оценка состояния безопасности радиационно опасных объектов удовлетворительная.

Центральным аппаратом Ростехнадзора в 2015 г. были организованы и проведены пять плановых инспекций по проверке выполнения предприятиями и учреждениями...

Также центральным аппаратом были организованы и проведены четыре внеплановые инспекции в рамках лицензирования деятельности по эксплуатации стационарных объектов, предназначенных для хранения радиоактивных отходов. Были проинспектированы «Объединенный эколого-технологический и научно-исследовательский центр по обезвреживанию РАО и охране окружающей среды» (ФГУП «РАДОН») и 3 отделения ФГУП «РосРАО».

Всего в 2015 г. проведено 1978 проверок (инспекций) РОО.

В табл. 29 приведены данные о количестве проверок (инспекций) РОО по МТУ ЯРБ.

<table>
<thead>
<tr>
<th>Количество проверок (инспекций) РОО по МТУ ЯРБ</th>
<th>МТУ ЯРБ</th>
<th>Всего</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ВМТУ</td>
<td>ДМТУ</td>
</tr>
<tr>
<td>Плановых</td>
<td>117</td>
<td>108</td>
</tr>
<tr>
<td>Внеплановых</td>
<td>97</td>
<td>37</td>
</tr>
<tr>
<td>В рамках постоянного надзора</td>
<td>172</td>
<td>441</td>
</tr>
</tbody>
</table>

Число нарушений, выявленных инспекторским составом при проведении инспекций в 2015 г., составило 1558, из них 1081 нарушение связано с несоблюдением требований по радиационной безопасности (РБ), 163 нарушения — с несоблюдением требований по физической защите, 314 нарушений — с несоблюдением требований по учету и контролю РВ и РАО.

В табл. 30 приведено распределение нарушений, связанных с несоблюдением требований по РБ.

| Распределение выявленных нарушений, связанных с несоблюдением требований по РБ |
|---|-----------------|----------------|
| Наименование показателя | Количество | Доля, % |
| Всего нарушений, связанных с несоблюдением требований по РБ | 1081 | |
| из них связанных с выполнением комплекса мер: | | |
| правового характера: | 130 | 12,0 |
| обеспечением контроля сроков действия разрешительных документов (лицензий, разрешений, санитарно-эпидемиологических заключений и пр.) органов государственного регулирования безопасности в ОИАЭ, а также их своевременного переоформления | 129 | 11,9 |
| поддержанием финансового обеспечения предела ответственности за убытки и вред, причиненный юридическим и физическим лицам радиационным воздействием при осуществлении разрешенного вида деятельности | 1 | 0,1 |
Наименование показателя	Количество	Доля, %
организационного характера: | | |
общей документацией по обеспечению РБ и ее соответствия нормативным требованиям | 459 | 42,5
организацией радиационного контроля | 23 | 2,1
готовностью к предупреждению радиационных аварий и ликвидации их последствий | 32 | 3,0
проведением расследований обстоятельств и установлением причин нарушений в работе РОО | 10 | 0,9
отчетностью в установленные сроки по всем разделам условий действия лицензий | 4 | 0,4
инженерно-технического характера: | | |
состоянием и обслуживанием систем и элементов, важных для безопасности | 53 | 4,9
проведением радиационного контроля, в том числе состоянием дозиметрических и радиометрических приборов | 15 | 1,4
квалификационного и обучающего характера: | | |
организацией систематической подготовки и проверки знаний работников (персонала) в учреждении по обеспечению РБ, радиационному контролю (РК), учету и контролю РВ и РАО, ФЗ РИ | 75 | 6,9
планированием и осуществлением повышения квалификации работников (персонала) по РБ, РК, учету и контролю РВ и РАО, ФЗ РИ | 63 | 5,8
уровнем квалификации персонала | 4 | 0,4
прочими нарушениями | 213 | 19,7

Основную долю нарушений составляют:
нарушения, связанные с ведением общей документации по обеспечению РБ;
нарушения, связанные с обеспечением контроля сроков действия разрешительных документов;
отсутствие плановой подготовки и проверки знаний персонала.
За отчетный период нарушений, которые привели или могли привести к воздействию на окружающую среду и облучению населения выше установленных норм, не выявлено.
Основной мерой воздействия к нарушителям по-прежнему остается выдача предписаний на устранение нарушений в деятельности поднадзорных организаций. Такая мера применялась в случаях, когда недостатки носили организационный характер и не влияли на обеспечение РБ в целом.
Инспекторским составом на основании результатов инспекций использовались предоставленные законодательством Российской Федерации полномочия по привлечению виновных лиц к административной ответственности за нарушения законодательства в области использования атомной энергии.
В табл. 31 приведены показатели по наложенным и взысканным штрафам.
Таблица 31

<table>
<thead>
<tr>
<th>Лицо, в отношении которого применялись наказания в виде штрафа</th>
<th>Наложено</th>
<th>Взыскано, тыс. руб.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Личностное лицо</td>
<td>15</td>
<td>380</td>
</tr>
<tr>
<td>Юридическое лицо</td>
<td>33</td>
<td>7551</td>
</tr>
</tbody>
</table>

В 2015 г. имели место 35 нарушений в работе радиационно опасных объектов. Распределение нарушений по МТУ ЯРБ за 2015 г. представлено в табл. 32.

Таблица 32

<table>
<thead>
<tr>
<th>Показатель</th>
<th>МТУ ЯРБ</th>
<th>ЦМТУ</th>
<th>СЕМТУ</th>
<th>ВМТУ</th>
<th>ДМТУ</th>
<th>УМТУ</th>
<th>МТУ Сибири и Дальнего Востока</th>
</tr>
</thead>
<tbody>
<tr>
<td>Количество зафиксированных нарушений, из них:</td>
<td>1</td>
<td>6</td>
<td>5</td>
<td>1</td>
<td>14</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>А</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>П-1</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>П-2</td>
<td>1</td>
<td>6</td>
<td>5</td>
<td>1</td>
<td>14</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

Происшествий класса А и П-1 в 2015 г. не зафиксировано.

Все происшествия, зафиксированные в 2015 г., были отнесены к классу П-2 по классификации федеральных норм и правил «Правила расследования и учета нарушений при обращении с радиационными источниками и радиоактивными веществами, применяемыми в народном хозяйстве» (НП-014–2000).

Основное количество происшествий связано с прихватами и обрывами каротажных снарядов при проведении геофизических работ, имеющих в своем составе радионуклидные источники излучения. В результате проведенных работ по ликвидации упомянутых происшествий в большинстве случаев (около 65 %) РнИ были извлечены из скважин без повреждений. В остальных случаях РнИ были захоронены на глубинах свыше 1500 м с установкой цементного моста.

В 2015 г. было зафиксировано 4 случая обнаружения бесхозяйных источников: обнаружение неучтенных РнИ при разборе складского помещения (2 головки гамма-дефектоскопа и десять источников для калибровки оборудования); обнаружение четырех неучтенных РнИ при уборке и осмотре хранилища РнИ; обнаружение неучтенного (-ых) РИ в ходе радиационного контроля на территории ампулохранилища ФБУЗ «Центр гигиены и эпидемиологии в Забайкальском крае»; обнаружение авиационного прибора (расходомера) с нанесенным на циферблат светосоставом постоянного действия (загрязняющий радионуклид радий-226) при выезде автомобиля с территории Внуковского авиаремонтного завода № 400.

В 2015 г. было зафиксировано 2 случая утраты ЗРнИ при транспортировании на специальной каротажной машине. В обоих случаях утерянные источники найдены. Также при проведении инвентаризации в организации отсутствовал радиоизотопный прибор (плотномер) с ЗРнИ на основе радионуклида цезий-137.

Кроме того, в отчетном периоде был зафиксирован случай разлива радиоактивного раствора при проведении дозиметрических замеров радионуклидной диагно-
Годовой отчет о деятельности Федеральной службы стической лаборатории и случай выпадения ЗРнИ из дефектоскопа «Гаммарид-192» при проведении гамма-дефектоскопии.

Большая часть нарушений П-2 (нераэдияционные происшествия) зарегистрированы в МТУ ЯРБ Сибири и Дальнего Востока, Уральском МТУ ЯРБ. Это связано с тем, что основное количество нарушений при эксплуатации РИ зарегистрировано на предприятиях добывающей промышленности, сконцентрированных на территориях, поднадзорных указанным МТУ ЯРБ.

В табл. 33 показана динамика количества основных нарушений в работе радиационно опасных объектов по годам.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Количество нарушений, в том числе</td>
<td>46</td>
<td>58</td>
<td>33</td>
<td>41</td>
<td>33</td>
<td>35</td>
</tr>
<tr>
<td>Количество нарушений при проведении геофизических исследований (% от общего количества нарушений)</td>
<td>26 (57%)</td>
<td>21 (36%)</td>
<td>15 (45%)</td>
<td>28 (68%)</td>
<td>27 (82%)</td>
<td>26 (76%)</td>
</tr>
<tr>
<td>Количество нарушений типа «незапланированное облучение»</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Количество нарушений типа «обнаружение бесхозных РнИ и/или ПВ»</td>
<td>20</td>
<td>31</td>
<td>4</td>
<td>5</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

По сравнению с 2014 г. количество нарушений при проведении геофизических исследований в 2015 г. практически не изменилось. Основными причинами нарушений при проведении геофизических исследований являлись несоблюдение технологии подготовки скважин к исследованиям, нарушения регламента проведения работ и сложные геологические условия.

По имеющимся данным в 9 случаях из 26 (в 35 % случаев) оборудование для геофизических исследований, в котором содержатся закрытые радионуклидные источники, захоронено в скважинах. Поскольку оборудование, содержащее источники, захоронено на глубинах от нескольких сотен метров до нескольких километров и сверху закрыто слоем бетона толщиной несколько десятков метров, то радиационное воздействие на окружающую среду маловероятно.

В остальных случаях оборудование с источниками было извлечено на поверхность, источники обследованы на наличие повреждений, при этом во всех проиошедших в 2015 г. случаях повреждений оборудования и источников не выявлен, как и в предыдущие годы. Можно сказать, что способы и средства извлечения оборудования, в составе которого содержаться радионуклидные источники, предусмотренные при возникновении нештатной ситуации (прихвате компоновки), позволяют проводить работы по извлечению безопасно.

Количество зафиксированных происшествий типа «обнаружение бесхозных РнИ и/или ПВ» в 2012–2015 гг. в целом осталось без изменений.

Деятельность эксплуатирующих организаций по расследованию нарушений в работе радиационно опасных объектов соответствует требованиям Правил расследования и учета нарушений при обращении с радиационными источниками и радиоактивными веществами, применяемыми в народном хозяйстве (НП-014–2000).
Превышение основных пределов доз облучения персонала и населения, недопустимые выбросы и сбросы радиоактивных веществ, загрязнение окружающей среды, несанкционированные проникновения на территорию радиационно опасных объектов, несанкционированный доступ к РИ, РВ и РАО в отчетном периоде не зафиксированы.

В 2015 г. продолжались как работы по выводу из эксплуатации РИТЭГ, так и сложные работы по утилизации «аварийных» и «проблемных» РИТЭГ, оказавшихся в пунктах временного хранения Советской Гавани, ДВЦ «ДальРАО» и ОАО «НИИТФА».

В отчетном периоде в ОАО «В/О «Изотоп» для разборки и дальнейшей утилизации было передано два проблемных РИТЭГ: «Бета-М» зав. № 57 (объект «Кувэккын») и «ГОНГ» зав. № 23 (о. Лишний Диксонской гидробазы).

Из Антарктики на научно-экспедиционном судне было доставлено и передано в ОАО «В/О «Изотоп» для разборки и дальнейшей утилизации четыре РИТЭГ «Бета-М».

Один аварийный РИТЭГ, затопленный после аварийного сброса с вертолета в Охотском море в районе мыса Марии в 1997 г., поднятый в 2007 г. и помещенный на хранение в войсковую часть 13023 ФКУ «Объединенное стратегическое командование Восточного военного округа» (п. Лососина, Совгаванский район, Хабаровский край), в 2013 г. обследован представителями ОАО «В/О «Изотоп» и Курчатовского института на возможность его транспортирования к месту утилизации. Комиссией сделан вывод о возможности транспортирования данного РИТЭГ в специальном контейнере. Меры командованием Восточного военного округа по подготовке аварийного РИТЭГ к транспортированию (заказ транспортного контейнера и непосредственно перевозка) в течение двух лет из-за проблем с финансированием не принимаются.

В АО «НИИТФА» в отчетном периоде работы по выводу из эксплуатации РИТЭГ не проводились. В настоящее время в организации находится один РИТЭГ, работы с которым начнутся по мере выделения финансовых средств.

В результате разборки РИТЭГ масса обедненного урана на конец отчетного периода составила 7,1 т (в АО «НИИТФА» — 3,6 т и в АО В/О «Изотоп» — 3,5 т). Таким образом, проблема утилизации защиты из обедненного урана, по-прежнему, продолжает оставаться актуальной.

Следует отметить, что при хранении РИТЭГ не являются потенциальными источниками радиоактивного загрязнения окружающей среды, безопасны для населения.

Однако в случае разрушения корпуса РИТЭГ механическим или любым другим путем РИТЭГ может представлять серьезную радиационную опасность для лиц, находящихся в непосредственной близости. Радиоактивное загрязнение окружающей среды и в этом случае практически исключено.

Во всех субъектах Российской Федерации определены подразделения (управления, отделы), ответственные за обеспечение радиационной безопасности на территории данных субъектов. В каждом субъекте Российской Федерации созданы структуры, подчиненные правительству (администрации) субъекта федерации, отвечающие за проведение ежегодных инвентаризаций РВ и РАО.

Количество организаций, имеющих лицензии на эксплуатацию пунктов хранения РВ и РАО в 2014 и 2015 гг., приведено в табл. 34.
Таблица 34

<table>
<thead>
<tr>
<th>Количество организаций, имеющих лицензии на эксплуатацию пунктов хранения РВ и РАО</th>
<th>2014 г.</th>
<th>2015 г.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Количество организаций, имеющих лицензии на эксплуатацию пунктов хранения (ПХ) РВ и РАО</td>
<td>716</td>
<td>611</td>
</tr>
<tr>
<td>Количество ПХ РВ, РАО специализированных, неспециализированных в поднадзорных организациях</td>
<td>983</td>
<td>880</td>
</tr>
<tr>
<td>в том числе:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ПХ РВ, всего</td>
<td>866</td>
<td>770</td>
</tr>
<tr>
<td>специализированные</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>неспециализированные</td>
<td>864</td>
<td>769</td>
</tr>
<tr>
<td>ПХ РАО, всего</td>
<td>105</td>
<td>93</td>
</tr>
<tr>
<td>специализированные</td>
<td>37</td>
<td>42</td>
</tr>
<tr>
<td>неспециализированные</td>
<td>68</td>
<td>51</td>
</tr>
<tr>
<td>ПХ РАО природного происхождения, всего</td>
<td>12</td>
<td>17</td>
</tr>
<tr>
<td>специализированные</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>неспециализированные</td>
<td>12</td>
<td>17</td>
</tr>
</tbody>
</table>

По потенциальной радиационной опасности указанные пункты хранения отнесены ко II и III категории, что означает ограничение радиационного воздействия при аварии территорией объекта (III категория) или территорией санитарно-защитной зоны (II категория).

Отходы, поступающие на хранение, представлены в основном отработавшими РнИ, радиоизотопными приборами, загрязненным грунтом, лабораторной посудой, строительным мусором, загрязненной спецодеждой и обувью.

В основе хранения лежит размещение РАО в приповерхностных сооружениях различного типа: железобетонных емкостях (для РАО низкого и среднего уровня активности), хранилищах колодезного типа (для отработавших радионуклидных источников), хранилищах траншейного типа (для низкоактивных отходов).

Безопасность хранения РАО обеспечивается за счет применения системы физических барьеров на пути распространения ионизирующего излучения и радиоактивных веществ в окружающую среду, включающую матричные материалы, первичную упаковку, контейнеры, систему инженерных барьеров хранилищ, геологическую структуру вмещающих пород, а также системы технических и организационных мер по защите барьеров и сохранению их эффективности.

Сбор, транспортирование, кондиционирование и хранение РАО осуществляются специализированными предприятиями: ФГУП «Предприятие по обращению с радиоактивными отходами «РосРАО» (ФГУП «РосРАО»), ФГУП «Национальный оператор по обращению с радиоактивными отходами» (ФГУП «НО РАО») и ФГУП «Объединенный эколого-технологический и научно-исследовательский центр по обезвреживанию РАО и охране окружающей среды» (ФГУП «РАДОН»).

Также стационарные неспециализированные пункты хранения РАО имеют организации различной ведомственной принадлежности.

Основным видом РАО в большинстве организаций являлись ЗРнИ с истекшим назначенным сроком службы. Хранение радиационных источников в организациях осуществляется как в специализированных, так и в неспециализированных объектовых хранилищах. Продление сроков эксплуатации ЗРнИ, сдача их на захоронение-
ние и замена на новые по-прежнему представляют для организаций сложность из-за организационных и финансовых проблем.

На предприятиях, перерабатывающих минеральное сырье и нефтепродукты, образующиеся после их переработки радиоактивные отходы поступают на долговременное хранение в пункты хранения РАО. При этом следует отметить, что не все организации нефтеперерабатывающего комплекса свои отходы переводят в РАО, а определяют их как промышленные отходы с повышенным содержанием природных радионуклидов, пригодные для дальнейшей переработки.

Данные о накопленных и сданных РАО эксплуатирующими организациями приведены в табл. 35.

Таблица 35
Данные о накопленных и сданных РАО эксплуатирующими организациями в 2014 и 2015 гг.

<table>
<thead>
<tr>
<th>Управление</th>
<th>2014 г.</th>
<th>2015 г.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ТРО</td>
<td>ЖРО</td>
</tr>
<tr>
<td></td>
<td>По активности, Бк</td>
<td>По объему, м³</td>
</tr>
<tr>
<td>ВМТУ</td>
<td>9,57·10¹¹</td>
<td>2845,82</td>
</tr>
<tr>
<td>ДМТУ</td>
<td>2,02·10⁸</td>
<td>73,41</td>
</tr>
<tr>
<td>СЕМТУ</td>
<td>1,15·10¹³</td>
<td>1369,51</td>
</tr>
<tr>
<td>УМТУ</td>
<td>7,49·10¹³</td>
<td>1026,97</td>
</tr>
<tr>
<td>ЦМТУ</td>
<td>9,04·10¹³</td>
<td>873,12</td>
</tr>
<tr>
<td>МТУ Сибири и ДВ</td>
<td>4,13·10¹³</td>
<td>1715,7</td>
</tr>
<tr>
<td>Всего:</td>
<td>9,88·10¹³</td>
<td>7904,52</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Управление</th>
<th>2014 г.</th>
<th>2015 г.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Количество РАО, образовавшихся в организациях</td>
<td></td>
</tr>
<tr>
<td>ВМТУ</td>
<td>1,0·10¹⁰</td>
<td>232,12</td>
</tr>
<tr>
<td>ДМТУ</td>
<td>2,0·10⁸</td>
<td>73,41</td>
</tr>
<tr>
<td>СЕМТУ</td>
<td>5,6·10¹³</td>
<td>1608,8</td>
</tr>
<tr>
<td>УМТУ</td>
<td>7,5·10¹²</td>
<td>1026,9</td>
</tr>
<tr>
<td>ЦМТУ</td>
<td>9,0·10¹³</td>
<td>831,9</td>
</tr>
<tr>
<td>МТУ Сибири и ДВ</td>
<td>1,2·1₀¹¹</td>
<td>13</td>
</tr>
<tr>
<td>Всего:</td>
<td>1,5·10¹⁴</td>
<td>3786,18</td>
</tr>
</tbody>
</table>

Помимо эксплуатации ПХ, хранилищ РАО предприятия также осуществляют:
обращение с РАО при проведении радиационно-аварийных работ, связанных с выявлением и ликвидацией радиационного загрязнения;
обращение с РАО, радиоактивными веществами и ИИИ при их транспортировании;
обращение с РАО, радиоактивными веществами и ИИИ при проведении радиационного контроля и определении радионуклидного состава РАО;
проведение работ по индивидуальному дозиметрическому контролю;
проведение работ по дезактивации одежды, средств защиты, технологического оборудования, транспортных контейнеров, специализированных автозаминиц;
осуществление контроля за радиационной обстановкой в зоне возможного загрязнения, санитарно-защитной зоне, зоне наблюдения с использованием технологических средств непрерывного, оперативного контроля, лабораторного анализа; осуществлять контроль в рамках системы государственного учета и контроля радиоактивных веществ и РАО в Российской Федерации.
Переработка РАО осуществляется тремя отделениями ФГУП «РосРАО» и ФГУП «РАДОН».

Переработка РАО осуществляется тремя отделениями ФГУП «РосРАО» и ФГУП «РАДОН».

Переработка РАО осуществляется тремя отделениями ФГУП «РосРАО» и ФГУП «РАДОН».
В большинстве организаций эксплуатация РИ, обращение с радиоактивными веществами и РАО осуществляется в соответствии с требованиями нормативных документов в области использования атомной энергии.

Существующие системы и элементы, обеспечивающие РБ (системы перемещения и фиксации закрытых радионуклидных источников, системы управления РИ, системы сигнализации и оповещения о радиационной опасности, системы блокировок, системы физических барьеров, системы электро-, тепло-, водо-, газоснабжения, системы вентиляции и пожарной безопасности), в основном соответствуют проектным решениям и находятся в рабочем состоянии.

Техническое обслуживание, замена выработавшего ресурс оборудования в онкологических диспансерах проводились силами специализированных организаций, имеющих соответствующие лицензии.

В большинстве организаций эксплуатация РИ, обращение с радиоактивными веществами и РАО осуществляется в соответствии с требованиями нормативных документов в области использования атомной энергии.

Значительная часть неустранимых в установленные сроки нарушений во многом связана с недостатком у организаций финансовых средств на строительно-монтажные работы, вывод из эксплуатации РИ, приобретение радиационной техники, замену отработавших назначенный срок службы ЗРнИ и сдачу на длительное хранение (захоронение) РАО, техническое обслуживание и освидетельствование технических средств и систем, обеспечивающих РБ.

Это характерно в первую очередь для бюджетных организаций федерального подчинения, бюджетных организаций субъектов Российской Федерации, а также некоторых акционерных обществ.

Радиационный контроль (РК) в поднадзорных организациях осуществлялся с учетом категории по потенциальной радиационной опасности и класса работ штатными службами РБ или назначенными ответственными лицами, а в отдельных случаях привлеченными организациями, имеющими лицензии Ростехнадзора на оказание такого рода услуг.

Основными контролируемыми параметрами при эксплуатации РИ в организациях являются:
- мощность дозы гамма-излучения;
- уровень радиоактивного загрязнения рабочих поверхностей, оборудования, транспортных средств, одежды и кожных покровов персонала.

Кроме того, осуществлялся контроль герметичности ЗРнИ, а при работе с РВ контроль за содержанием радиоактивных газов и аэрозолей в воздухе рабочих и других помещений организаций.

Дозовые нагрузки на персонал группы «А» различных профессий (дефектоскописты, дозиметристы, дезактиваторщики, водители специальных автомобилей, радиологи, специалисты по перезарядке) за последние годы практически не изменились и согласно годовым отчетам поднадзорных организаций в отчетном периоде не превышали контрольных уровней и пределов доз, установленных НРБ–99/2010.

Мероприятия, направленные на повышение уровня физической защиты радиационно опасных объектов, включали меры организационного характера (разработку и пересмотр документов) и инженерно-технического характера (совершенствование средств охранной сигнализации, защитных барьеров, сил охраны и т. п.).
Состояние физической защиты в поднадзорных организациях обеспечивает сохранность РИ, радиоактивных веществ и РАО. Хранение источников излучения осуществляется в специально отведенных и оборудованных для этих целей помещениях, оснащенных системой охранной сигнализации, выведенной на пульт охраны. Организациями проводится анализ соответствия существующих систем физической защиты требованиям федеральных норм и правил и принимаются меры к устранению недостатков, вскрытых при проведении инспекций.

Степень готовности к ликвидации радиационных аварий и их последствий определяется наличием перечней возможных аварий при осуществлении разрешенной деятельности и прогноза их последствий, утвержденной номенклатуре запасов, программой подготовки и состоянием, достаточностью и соответствием технических средств и аварийных методик проведения противоаварийных тренировок, навыками, приобретенными персоналом при проведении вышеуказанных тренировок.

Во всех организациях разработаны планы мероприятий по защите персонала, имеются инструкции по действиям персонала в аварийных ситуациях, предусмотрены аварийные запасы, количество которых определяется по согласованию с органами Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека. В этих документах определены аварийные ситуации (фрагменты исходных событий) и действия персонала при возникновении аварийных ситуаций.

Анализ инспекционной деятельности в отчетном периоде показал, что основными факторами, влияющими на состояние радиационной безопасности радиационно опасных объектов, являются:

изношенность техники и оборудования, используемых при работах с радиоактивными веществами и РАО;

необходимость вывода из эксплуатации мощных радиоизотопных установок, выработавших ресурс, и замена выработавших назначенный срок службы ЗРнИ, действующих радиоизотопных установок;

недостаточный уровень качества проводимых работ организациями, предоставляющими услуги эксплуатирующим организациям;

сохранение проблемы утилизации изделий из обедненного урана;

проблема накопления и необоснованного хранения в организациях источников с истекшим назначенным сроком службы из-за ограниченных финансовых возможностей организаций;

замена или продление назначенных сроков службы ЗРнИ метрологического назначения.

В поднадзорных организациях уровень РБ соответствует требованиям норм и правил в области использования атомной энергии.

На основании проведенного анализа нарушений может быть дана общая оценка состояния безопасности РОО, основанная на отсутствии аварий и радиационных происшествий (класс П-1 по НП-014—2000) и непревышении свыше установленных норм дозовых нагрузок на персонал поднадзорных организаций и население. Состояние безопасности в поднадзорных организациях при эксплуатации радиационных источников, пунктов хранения РАО и использовании радиоактивных веществ может быть оценено как удовлетворительное.
2.2.6. Системы государственного учета и контроля ядерных материалов, радиоактивных веществ и радиоактивных отходов

2.2.6.1. Система государственного учета и контроля ядерных материалов

В области учета и контроля ядерных материалов в организациях используются следующие нормативные документы федерального уровня:

Федеральный закон от 21 ноября 1995 г. № 170-ФЗ «Об использовании атомной энергии»;

Федеральный закон от 26 июня 2008 г. № 102-ФЗ «Об обеспечении единства измерений»;

Федеральный закон от 26 декабря 2008 г. № 294-ФЗ «О защите прав юридических лиц и индивидуальных предпринимателей при осуществлении государственного контроля (надзора) и муниципального контроля»;

Административный регламент по исполнению Федеральной службой по экологическому, технологическому и атомному надзору государственной функции по осуществлению контроля и надзора за физической защитой ядерных установок, радиационных источников, пунктов хранения, ядерных материалов и радиоактивных веществ, за системами единого государственного учета и контроля ядерных материалов, радиоактивных веществ, радиоактивных отходов, утвержденный приказом Федеральной службы по экологическому, технологическому и атомному надзору от 15 декабря 2011 г. № 703;

Положение о системе государственного учета и контроля ядерных материалов, утвержденное постановлением Правительства Российской Федерации от 6 мая 2008 г. № 352;

Основные правила учета и контроля ядерных материалов (НП-030–12), утвержденные приказом Ростехнадзора от 17 апреля 2012 г. № 255;

Правила перевода ядерных материалов в категорию радиоактивных отходов (НП-072–13), утвержденные приказом Ростехнадзора от 5 июля 2013 г. № 288;

Требования к организации зон баланса материалов (НП-081–07), утвержденные постановлением Ростехнадзора от 19 ноября 2007 г. № 2.

Также используются нормативные и организационно-распорядительные документы уровня эксплуатирующих организаций, организаций, осуществляющих обращение с ядерными материалами.

В рамках надзора за системой государственного учета и контроля ядерных материалов Ростехнадзор осуществляет надзор за 51 организацией, в которых организовано 298 зон баланса ядерных материалов (ЗБМ).

Всего 21 организация и 81 ЗБМ относятся к 1-й категории ядерных материалов (наиболее потенциально опасной), 4 организации и 11 ЗБМ — к 2-й категории, 4 организации и 19 ЗБМ — к 3-й категории, 22 организации и 187 ЗБМ — к 4-й категории.

Всего в 2015 г. было проведено 215 проверок состояния учета и контроля ядерных материалов, из них 10 % проверок (22) были проведены с использованием технических средств (проведение инспекционных измерений с помощью приборов неразрушающего контроля при проведении проверки наличия ядерных материалов). Всего выявлено 208 нарушений федеральных норм и правил и условий лицензий. По итогам проверок наложено 2 штрафа на общую сумму 230 тыс. руб.
В 2015 г. выявлены 3 аномалии в учете и контроле ЯМ, связанные с превышением допустимых пределов инвентаризационной разницы при проведении физической инвентаризации.

Из 51 организации, проверяемой в рамках надзора за системой государственного учета и контроля ядерных материалов, в 46 организациях установлен режим постоянного государственного надзора. В данных организациях проверки учета и контроля ядерных материалов проводятся как в рамках плановых проверок, так и в рамках постоянного надзора.

Проведение проверок состояния учета и контроля ядерных материалов, выявленные нарушения требований нормативной документации

Количество проведенных в 2015 г. проверок по сравнению с аналогичным периодом 2014 г. несколько возросло (210 проверок проведено в 2014 г., 215 проверок — в 2015 г.).

Наибольшее количество проверок в 2015 г. проведено Центральным МТУ ЯРБ (60 проверок, или 28 % от общего числа проверок) и Уральским МТУ ЯРБ (46 проверок, или 21 % от общего числа проверок). Наименьшее количество проверок было проведено Северо-Европейским МТУ ЯРБ (19 проверок состояния учета и контроля ядерных материалов, или 9 % от общего числа проверок).

В 2015 г. количество выявленных нарушений возросло по сравнению 2014 г. (186 нарушений в 2014 г., 208 нарушений в 2015 г.).

Количество нарушений на атомных станциях (Калининской, Кольской, Белоярской, Смоленской, Нововоронежской, Ленинградской, Курской, Балаковской, Ростовской, Билибинской) составляет 2 % от всех нарушений по учету и контролю ядерных материалов. В среднем на каждую АЭС приходится одно нарушение. При этом проверки, в рамках которых проверялись вопросы учета и контроля ядерных материалов, проводились с высокой интенсивностью, в среднем 6 проверок на каждой АЭС за год (27 % от всех проверок состояния учета и контроля ядерных материалов).

Небольшое количество нарушений объясняется тем, что на АЭС используются только ядерные материалы в виде учетных единиц (тепловыделяющие сборки (ТВС)). Кроме того, положительным фактором является хорошая организация и координация работ в области учета и контроля ядерных материалов в ОАО Концерн «Росэнергоатом».

На предприятиях топливного цикла, связанных с изготовлением топлива для АЭС (ОАО НЗХК, ОАО МСЗ, ОАО ЧМЗ), количество нарушений составляет 19 % от всех выявленных нарушений (в среднем 8 нарушений на каждое предприятие).

В среднем на каждом предприятии было проведено 7 проверок, в которых проверялись вопросы учета и контроля ядерных материалов (17 % от всех проверок состояния учета и контроля ядерных материалов).

На химических комбинатах, объединяющих несколько стадий топливного цикла (ФГУП «ПО «Маяк», ОАО СЖК, ФГУП ГХК), количество нарушений составило 31 % от всех нарушений (в среднем порядка 21 нарушение на каждое предприятие). На этих предприятиях было проведено в среднем 12 проверок на каждом предприятии (17 % от всех проверок состояния учета и контроля ядерных материалов).

Данные предприятия являются наиболее сложными для организации системы учета и контроля ядерных материалов, этим объясняется относительно большое количество проводимых проверок состояния учета и контроля ядерных материалов и выявленных нарушений.
На заводах по разделению изотопов (ОАО АЭХК, ОАО «ПО ЭХЗ», ОАО УЭХК и МЦОУ) количество нарушений составило 6 % от всех нарушений (в среднем порядка 3 нарушений на каждое предприятие). На каждом предприятии было проведено в среднем 5 проверок, в которых проверялись вопросы учета и контроля ядерных материалов (8 % от всех проверок состояния учета и контроля ядерных материалов).

На предприятиях по добыче урана (ОАО ППГХО, ОАО Хиагда, ЗАО Далур, ЗАО «Эльконский горно-металлургический комбинат», ЗАО «Лунное») количество нарушений составило 2 % от всех выявленных нарушений (в среднем одно нарушение на предприятие). На этих предприятиях было проведено в среднем по одной проверке, в которых проверялись вопросы учета и контроля ядерных материалов (3 % от всех проверок состояния учета и контроля ядерных материалов).

В научно-исследовательских организациях (всего под надзором 20 научно-исследовательских институтов и исследовательских центров) количество нарушений составило 36 % от всех нарушений (в среднем около 4 нарушений на каждую организацию). Было проведено в среднем по три проверки на каждую научную организацию, в которых проверялись вопросы учета и контроля ядерных материалов (25 % от всех проверок состояния учета и контроля ядерных материалов).

В учебных заведениях (МИФИ, МЭИ, ТПУ) количество выявленных нарушений составило 4 % от всех нарушений (в среднем около 3 нарушений на каждое учебное заведение). Было проведено в среднем по одной проверке на учебное заведение, в которых проверялись вопросы учета и контроля ядерных материалов (2 % от всех проверок состояния учета и контроля ядерных материалов).

Анализ показывает, что наибольшее число выявленных нарушений связано с организацией системы учета и контроля ядерных материалов в организации, проведением физических инвентаризаций, системой контроля доступа, системой измерений и организацией зон баланса материала. Результаты анализа представлены в табл. 36 и на рис. 6.

<table>
<thead>
<tr>
<th>Категория нарушений</th>
<th>Доля, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Общие требования к наличию лицензий и разрешений, постановке на учет и снятию с учета ядерных материалов</td>
<td>3</td>
</tr>
<tr>
<td>Организация зон баланса материала</td>
<td>13</td>
</tr>
<tr>
<td>Система контроля доступа</td>
<td>14</td>
</tr>
<tr>
<td>Система измерений</td>
<td>13</td>
</tr>
<tr>
<td>Передача ядерных материалов</td>
<td>3</td>
</tr>
<tr>
<td>Проведение физических инвентаризаций</td>
<td>16</td>
</tr>
<tr>
<td>Ведение учетной и отчетной документации</td>
<td>7</td>
</tr>
<tr>
<td>Организация системы учета и контроля</td>
<td>28</td>
</tr>
<tr>
<td>Обучение и проверка знаний персонала</td>
<td>3</td>
</tr>
</tbody>
</table>

Нарушения по направлению «Общие требованиями к наличию лицензий и разрешений, постановке на учёт и снятию с учёта» в основном вызваны несоблюдением требований к постановке на учёт плутония, образовавшегося в продуктах, облученных в ядерном реакторе, после выгрузки продуктов из реактора и снятию с учёта урана, выгоревшего в реакторе, снятию с учёта ядерных материалов при переводе
в категорию радиоактивных отходов, а также с отсутствием учета ядерных материалов в составе открытых радионуклидных источников.

Нарушения, связанные с организацией зон баланса материала (ЗБМ), вызваны нарушениями требований к описанию ЗБМ.

Нарушения, связанные с системой контроля доступа к ядерным материалам (СКД), в основном вызваны:
- отсутствием обеспечения требуемого контроля доступа (отсутствием пломб или системы наблюдения в местах доступа к ядерному материалу);
- отсутствием проверки пломб между физическими инвентаризациями или отсутствием документальной регистрации такой проверки.

Основными нарушениями, связанными с системой измерений ядерных материалов, являются отсутствие программ измерений для ЗБМ или несоответствия программы измерений фактически имеющейся системе измерений предприятия (несвоевременное внесение изменений в программу измерений).

Необходимо отметить, что учетные и подтверждающие измерения ядерных материалов (в том числе контроль при передачах) проводятся с разной эффективностью в разных организациях. Часть организаций активно проводят подтверждающие измерения, в том числе при контроле ядерных материалов при передачах и при физических инвентаризациях ядерных материалов, в то время как в некоторых организациях отсутствует соответствующий эффективный контроль за ядерными материалами с помощью проведения подтверждающих измерений. В связи с этим в данных организациях (отсутствием соответствующего уровня подтверждающих измерений ядерных материалов) проводятся соответствующие инспекционные измерения с целью независимого контроля фактического наличия ядерных материалов.

Нарушения, связанные с передачами ядерных материалов, как правило, связаны с несоблюдением порядка уведомления получателя об отправке, несвоевременной постановкой на учет ядерных материалов (или отсутствием постановки на учет) при передачах между ЗБМ.

Нарушения, связанные с проведением физической инвентаризации ядерных материалов:
- не подводится баланс по всем видам ядерных материалов или не рассчитывается погрешность инвентаризационной разницы;
- не осуществлялась проверка атрибутивных признаков учетных единиц ядерных материалов;
- не указывается предел допустимого значения модуля инвентаризационной разницы.
не соблюдаются требования к оформлению приказа о проведении физических инвентаризаций.

Нарушения, связанные с ведением учетных и предоставлением отчетных документов:
не оформляются все требуемые отчетные документы;
ошибки в ведении учетных документов (несоответствие разных документов или внесение исправлений не в установленном порядке).

Нарушения, связанные с организацией системы учета и контроля ядерных материалов:
в документах по учету и контролю ядерных материалов не определены места образования потерь и процедуры оценки потерь ядерных материалов;
не проводится административный контроль состояния учета и контроля ядерных материалов;
не определен перечень учетных и отчетных документов или не приведены их формы.

Случаев хищений, утрат или несанкционированного использования ядерных материалов в 2015 г. не зафиксировано.

В ходе проведения инспекционных измерений, проведенных инспекторами Ростехнадзора в 2015 г. в рамках проверок состояния учета и контроля ядерных материалов, было подтверждено фактическое наличие ядерных материалов учетным данным.

Инспекционные измерения проводились с помощью технических средств измерений с целью обеспечения независимого контроля наличия ядерных материалов. Так, для подтверждения фактического наличия ядерных материалов используются весовое оборудование (для подтверждения массы учетных единиц ядерными материалами), гамма-спектрометрическое оборудование (сцинтилляционные гамма-спектрометры NaI InSpector и германиевые полупроводниковые детекторы Ge InSpector для подтверждения вида ядерного материала и его изотопного состава или обогащения урана), счетчики нейтронных совпадений (для подтверждения массы ядерного материала в учетных единицах). При проведении инспекционных измерений используются поверенные в установленном порядке приборы, принадлежащие как Ростехнадзору, так и поднадзорным организациям. Измерения проводятся в соответствии с аттестованными методиками выполнения измерений с соблюдением соответствующих процедур контроля качества измерений.

Основными причинами недостатков в учете и контроле ядерных материалов являются:
низкий уровень знаний и недостаточная подготовка и обучение персонала в области учета и контроля ядерных материалов;
недостаточный административный контроль за состоянием системы учета и контроля ядерных материалов, в том числе из-за отсутствия методик, инструкций, положений, по которым проводится административный контроль;
слабое знание должностными лицами предприятий условий действия лицензий и обязанностей, возложенных на них приказами и распоряжениями по предприятию;
отсутствие в некоторых организациях единой службы учета контроля ядерных материалов, выполняющей функции по единому методическому обеспечению системы учета и контроля во всех подразделениях, а также функции по административному контролю за состоянием учета и контроля ядерных материалов в своей организации.
С целью устранения указанных недостатков Ростехнадзор:
проводит проверки состояния учета и контроля ядерных материалов;
применяет меры административного наказания при обнаружении нарушений федеральных норм и правил, учитывая соответствие указанных мер тяжести нарушений;
участвует в разработке и переработке нормативных и методических документов в области учета и контроля ядерных материалов — как федерального, так и ведомственного уровня.

В соответствии с функциями Ростехнадзора по выдаче разрешений на право ведения работ в области использования атомной энергии центральный аппарат Ростехнадзора и его территориальные органы участвовали в выдаче разрешений на право ведения работ в области использования атомной энергии работникам объектов использования атомной энергии, в том числе персоналу организаций, обеспечивающему учет и контроль ядерных материалов.

Организации, обращающиеся с ядерными материалами, имеют зарегистрированные зоны отчетности и предоставляют соответствующую отчетность в Федеральную информационную систему учета и контроля ядерных материалов (ФИС). В рамках надзора за учетом и контролем ядерных материалов Ростехнадзор проверяет функционирование ФИС, в рамках проверок в организациях проверяется своевременность и правильность предоставления соответствующей отчетности.

В целом по результатам надзора за учетом и контролем в 2015 г. можно сделать вывод о том, что отчетность в ФИС предоставляется своевременно и в полном объеме.

2.2.6.2. Система государственного учета и контроля радиоактивных веществ и радиоактивных отходов

Перечень нормативных документов по учету и контролю радиоактивных веществ и радиоактивных отходов:
Федеральный закон от 21 ноября 1995 г. № 170-ФЗ «Об использовании атомной энергии»;
Федеральный закон от 26 июня 2008 г. № 102-ФЗ «Об обеспечении единства измерений»;
Федеральный закон от 11 июля 2011 г. № 190-ФЗ «Об обращении с радиоактивными отходами и о внесении изменений в отдельные законодательные акты Российской Федерации»;
Федеральный закон от 26 декабря 2008 г. № 294-ФЗ «О защите прав юридических лиц и индивидуальных предпринимателей при осуществлении государственного контроля (надзора) и муниципального контроля»;
Административный регламент по исполнению Федеральной службой по экологическому, технологическому и атомному надзору государственной функции по осуществлению контроля и надзора за физической защитой ядерных установок, радиационных источников, пунктов хранения, ядерных материалов и радиоактивных веществ, за системами единого государственного учета и контроля ядерных материалов, радиоактивных веществ, радиоактивных отходов, утвержденный приказом Ростехнадзора от 15 декабря 2011 г. № 703;
Правила организации системы государственного учета и контроля радиоактивных веществ и радиоактивных отходов, утвержденные постановлением Правительства Российской Федерации от 11 октября 1997 г. № 1298;
Правила осуществления государственного учета и контроля радиоактивных отходов, в том числе регистрации радиоактивных отходов и пунктов хранения радиоактивных отходов, органом государственного управления в области обращения с радиоактивными отходами, утвержденные постановлением Правительства Российской Федерации от 19 ноября 2012 г. № 1188;

Положение о государственном учете и контроле радиоактивных веществ и радиоактивных отходов в Российской Федерации, утвержденное приказом Минатома России от 10.12.1999 № 761;

Основные правила учета и контроля радиоактивных веществ и радиоактивных отходов в организации (НП-067—11), утвержденные приказом Ростехнадзора от 31 января 2012 г. № 67;

Правила перевода ядерных материалов в категорию радиоактивных отходов (НП-072—13), утвержденные приказом Ростехнадзора от 5 июля 2013 г. № 288;

Формы отчета в области государственного учета и контроля радиоактивных веществ и радиоактивных отходов, порядка и сроков представления отчетов, утвержденные приказом Государственной корпорации по атомной энергии «Росатом» 06.12.2013 г. № 1/19-НПА, зарегистрированным Минюстом РФ 23 апреля 2014 г. № 32083.

В рамках надзора за системой государственного учета и контроля радиоактивных веществ и радиоактивных отходов Ростехнадзор осуществляет надзор за 1707 организациями, в том числе и за 73 региональными информационно-аналитическими центрами системы государственного учета и контроля радиоактивных веществ и радиоактивных отходов (РИАЦ).

Всего в 2015 г. было проведено 1196 проверок, в ходе которых проверялось состояние учета и контроля радиоактивных веществ и радиоактивных отходов. Выявлено 455 нарушений федеральных норм и правил и условий действия лицензии. Наложено 11 административных штрафов на общую сумму 280 тыс. руб. (в 2014 г. проведена 1131 проверка, выявлено 390 нарушений, наложено 9 административных штрафов на сумму 184 тыс. руб.).

Всего за 2015 г. зафиксирована информация об утере двух закрытых радионуклидных источников и обнаружено 15 неучтенных источников ионизирующего излучения.

Специалисты МТУ ЯРБ осуществляли контроль за ходом расследования соответствующих случаев выявления утери и обнаружении бесхозяйных или неучтенных источников радиоактивных материалов на территории поднадзорных предприятий.

Из 1707 организаций, осуществляющих деятельность по обращению с радиоактивными веществами и радиоактивными отходами, в 60 организациях установлен режим постоянного государственного надзора. В данных организациях проверки учета и контроля радиоактивных веществ и радиоактивных отходов проводятся как в рамках плановых проверок, так и в рамках постоянного надзора.

Проведение проверок состояния учета и контроля радиоактивных веществ и радиоактивных отходов, выявленные нарушения требований нормативной документации

Наибольшее количество нарушений в учете и контроле радиоактивных веществ и радиоактивных отходов выявлено инспекторами МТУ ЯРБ Сибири и Дальнего Востока (178 нарушений, или 39 % от общего числа нарушений) и Центрального МТУ ЯРБ (162 нарушения, или 37 % от общего числа нарушений).
Анализ всех выявленных нарушений в области учета и контроля радиоактивных веществ и радиоактивных отходов показывает, что наибольшее число нарушений связано с требованиями к организации системы учета и контроля радиоактивных веществ и радиоактивных отходов в организации, системой контроля доступа к радиоактивным веществам и радиоактивным отходам и ведением учетной и предоставлением отчетной документации.

Результаты анализа представлены в табл. 37 и на рис. 7.

Таблица 37

<table>
<thead>
<tr>
<th>Категория нарушений</th>
<th>Доля, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Общие требования к постановке на учет и снятию с учета</td>
<td>5</td>
</tr>
<tr>
<td>Организация системы учета и контроля</td>
<td>30</td>
</tr>
<tr>
<td>Система контроля доступа</td>
<td>18</td>
</tr>
<tr>
<td>Система измерений</td>
<td>10</td>
</tr>
<tr>
<td>Передачи</td>
<td>2</td>
</tr>
<tr>
<td>Проведение инвентаризации</td>
<td>11</td>
</tr>
<tr>
<td>Ведение учетной и отчетной документации</td>
<td>15</td>
</tr>
<tr>
<td>Обучение и проверка знаний персонала</td>
<td>9</td>
</tr>
</tbody>
</table>

Рис. 7. Анализ нарушений по учету и контролю радиоактивных веществ и радиоактивных отходов

Причинами указанных нарушений являются недостаточное внимание руководства предприятий к учету и контролю радиоактивных веществ и радиоактивных отходов, а также низкий уровень знаний и профессиональной подготовки персонала в области учета и контроля радиоактивных веществ и радиоактивных отходов.

С целью устранения указанных недостатков Ростехнадзор:

- проводит проверки состояния учета и контроля радиоактивных веществ и радиоактивных отходов;
- применяет меры административного наказания при обнаружении нарушений федеральных норм и правил, учитывающая соответствие указанных мер тяжести нарушений;
- участвует в разработке и переработке нормативных и методических документов в области учета и контроля радиоактивных веществ и радиоактивных отходов.

В течение 2015 г. при проверках состояния учета и контроля радиоактивных веществ и радиоактивных отходов проверялось предоставление отчетности в информационную систему учета и контроля радиоактивных веществ и радиоактивных отходов, при этом проверялась отчетность как организаций, так и РИАЦ. По сравнению с 2014 г. число выявленных нарушений, связанных с непредставлением отчетов либо нарушениями в самих отчетах, снизилось.
Для повышения качества надзорной деятельности необходимо продолжать проведение обучения инспекторов и работу по уточнению и разъяснению требований федеральных норм и правил в области учета и контроля радиоактивных веществ и радиоактивных отходов специалистам поднадзорных организаций.

2.2.7. Объекты ведения горных работ

2.2.7.1. Угольная промышленность

Государственный контроль в области промышленной безопасности на предприятиях угольной промышленности в 2015 г. осуществлялся на 101 шахте, 258 разрезах, 109 объектах обогащения угля.

К объектам I класса опасности относится 101 шахта (из них 63 осуществляют добычу); к II класса опасности — 186 разрезов и 101 объект обогащения угля; к III классу опасности — 49 разрезов и 7 объектов обогащения угля; к IV классу опасности — 23 разреза и 1 объект обогащения угля.

Общая добыча угля за 2015 г. по сравнению с 2014 г. увеличилась на 3,8 % и составила 373,4 млн т, в т.ч.:
- подземным способом — 103,7 млн т;
- открытым способом — 269,7 млн т.

Среднесписочная численность работающих в угольной отрасли составляет 217 273 чел.

Показатели состояния промышленной безопасности на угольных предприятиях отрасли за 2015 г. по сравнению с 2014 г. распределились следующим образом.

В 2015 г. на поднадзорных предприятиях произошло 8 аварий, из них одна авария с групповым несчастным случаем. При аварии с групповым несчастным случаем получили смертельные травмы 3 человека. При других авариях пострадавших и смертельно травмированных нет. Общее количество смертельно травмированных — 20 чел.

В 2014 г. на поднадзорных предприятиях произошло 8 аварий, из них 2 аварий с групповыми несчастными случаями, один групповой несчастный случай произошел без аварии. При авариях и групповых несчастных случаях пострадали 10 человек, из них 5 человек получили смертельные травмы. Общее количество смертельно травмированных — 26 чел.

Таким образом, количество несчастных случаев со смертельным исходом в 2015 г. снизилось на 23 %, общий травматизм снижен с 261 случая в 2014 г. до 258 случаев в 2015 г.

Динамика объемов добычи угля, производственного травматизма со смертельным исходом и аварийности за 1996—2015 гг. указана в табл. 38 и на рис. 8.

Таблица 38

<table>
<thead>
<tr>
<th>Год</th>
<th>Объем добычи угля, млн т</th>
<th>Число аварий</th>
<th>Количество смертельно травмированных, чел.</th>
<th>Удельный показатель смертельного травматизма, чел./млн т</th>
</tr>
</thead>
<tbody>
<tr>
<td>1996</td>
<td>255,0</td>
<td>78</td>
<td>134</td>
<td>0,52</td>
</tr>
<tr>
<td>1997</td>
<td>244,4</td>
<td>56</td>
<td>242</td>
<td>0,99</td>
</tr>
<tr>
<td>1998</td>
<td>232,4</td>
<td>54</td>
<td>139</td>
<td>0,60</td>
</tr>
<tr>
<td>1999</td>
<td>249,1</td>
<td>39</td>
<td>104</td>
<td>0,41</td>
</tr>
</tbody>
</table>

© Оформление. ЗАО НТЦ ПБ, 2016
Годовой отчет о деятельности Федеральной службы

<table>
<thead>
<tr>
<th>Год</th>
<th>Объем добычи угля, млн т</th>
<th>Число аварий</th>
<th>Количество смертельно травмированных, чел.</th>
<th>Удельный показатель смертельного травматизма, чел./млн т</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>254,2</td>
<td>34</td>
<td>115</td>
<td>0,45</td>
</tr>
<tr>
<td>2001</td>
<td>266,4</td>
<td>34</td>
<td>107</td>
<td>0,40</td>
</tr>
<tr>
<td>2002</td>
<td>234,2</td>
<td>27</td>
<td>83</td>
<td>0,35</td>
</tr>
<tr>
<td>2003</td>
<td>270,3</td>
<td>30</td>
<td>99</td>
<td>0,37</td>
</tr>
<tr>
<td>2004</td>
<td>284,5</td>
<td>33</td>
<td>148</td>
<td>0,52</td>
</tr>
<tr>
<td>2005</td>
<td>300,2</td>
<td>27</td>
<td>107</td>
<td>0,36</td>
</tr>
<tr>
<td>2006</td>
<td>294,1</td>
<td>23</td>
<td>68</td>
<td>0,23</td>
</tr>
<tr>
<td>2007</td>
<td>316,0</td>
<td>21</td>
<td>232</td>
<td>0,73</td>
</tr>
<tr>
<td>2008</td>
<td>319,47</td>
<td>12</td>
<td>53</td>
<td>0,16</td>
</tr>
<tr>
<td>2009</td>
<td>301,79</td>
<td>9</td>
<td>48</td>
<td>0,15</td>
</tr>
<tr>
<td>2010</td>
<td>323,18</td>
<td>22</td>
<td>135</td>
<td>0,41</td>
</tr>
<tr>
<td>2011</td>
<td>337,4</td>
<td>13</td>
<td>46</td>
<td>0,13</td>
</tr>
<tr>
<td>2012</td>
<td>355,2</td>
<td>16</td>
<td>36</td>
<td>0,10</td>
</tr>
<tr>
<td>2013</td>
<td>352,01</td>
<td>11</td>
<td>63</td>
<td>0,17</td>
</tr>
<tr>
<td>2014</td>
<td>358,2</td>
<td>8</td>
<td>26</td>
<td>0,07</td>
</tr>
<tr>
<td>2015</td>
<td>373,4</td>
<td>8</td>
<td>20</td>
<td>0,05</td>
</tr>
</tbody>
</table>

Рис. 8. Динамика объемов добычи угля, смертельного травматизма и аварийности

Величина удельного показателя смертельного травматизма, определяемого как количество смертельно травмированных шахтеров на 1 млн т добытого угля за год, в сравнении с 2014 г. в 2015 г. снизилась с 0,07 до 0,053 чел./млн т, что сопоставимо с лучшими показателями мировой практики.

В 2013 г. этот показатель составлял 0,17 чел./млн т, а 10 лет назад — 0,52 чел./млн т.

За последние 10 лет 25 % аварий были связаны со вспышками, взрывами метана, угольной пыли. В этих авариях погибло 84 % от общего числа погибших во всех авариях за 10 лет. Треть этих аварий происходит по причине пожаров (рис. 9).
Всего с 2003 г. по 2015 г. зафиксировано 78 пожаров. Все пожары были локализованы. Большинство ликвидированы и комиссионно списаны. Количество зарегистрированных, но несписанных пожаров — 21. Горные выработки и выработанные пространства, в которых они произошли, изолированы взрывоустойчивыми перемычками. Угроза их рецидива при выполнении всех необходимых в таких случаях мероприятий минимальна. Мероприятия по тушению пожара осуществляются в соответствии с проектом и включают не только контроль, но и воздействие на зону пожара через скважины инертными материалами, в т.ч. газообразным азотом.

Количество пострадавших при пожарах с 2003 по 2015 г. составило 5 человек, из них 2 человека со смертельным исходом.

Взрывов и вспышек метана, угольной пыли в 2015 г. зафиксировано не было (рис. 10).

В текущем году произошло 8 аварий, из них 6 аварий произошли на подземных работах и 2 аварии — на открытых горных работах.

Общий суммарный ущерб от произошедших аварий составил — 2 542 048 тыс. руб.

Пожары на подземных горных работах произошли по следующим причинам: отсутствие надлежащего контроля за аэрологической обстановкой в горных выработках; отсутствие контроля за состоянием изолирующих сооружений; недостаточный уровень организации и осуществления производственного контроля в части контроля за формированием пожароопасной среды в выработанном пространстве.

Затопление на подземных горных работах происходили из-за отсутствия контроля за техническим состоянием оборудования и горными выработками, используемыми как водосборники.

Обрушения на открытых горных работах происходили по следующим причинам: недостаточный контроль в части маркшейдерского обеспечения; невыполнение и отсутствие мероприятий по профилактике и предотвращению водонасыщения пород при неблагоприятных климатических условиях.
Рис. 10. Динамика общего количества аварий, взрывов и вспышек метана в период с 2004 по 2015 г.

Причинами смертельного травматизма, связанного с обрушением породы, являются:
- необеспечение мер по устойчивости уступов и бортов на открытых горных работах;
- нарушения паспортов крепления горных выработок, паспортов выемочных участков;
- низкий уровень производственной дисциплины;
- нахождение пострадавших в опасной зоне.

Причинами смертельного травматизма, связанного с падением, являются:
- необеспечение безопасных условий и охраны труда работников;
- нахождение пострадавших в опасной зоне.

Причинами смертельного травматизма, связанного с воздействием машин и механизмов, являются:
- необеспечение безопасных условий и охраны труда при эксплуатации горношахтного оборудования;
- ослабление производственного контроля за выполнением требований промышленной безопасности и охраны труда;
- недостатки в обучении безопасным методам и приемам выполнения работ, выразившиеся в нарушении технологии работ.

Причинами смертельного травматизма, связанного с воздействием электротока, являются:
- эксплуатация неисправного электрооборудования;
- несоблюдение пострадавшими требований безопасности.

Причинами смертельного травматизма, связанного с транспортом, являются:
- нарушение пострадавшим требований безопасности при посадке на движущийся ленточный конвейер;
- нарушение пострадавшим правил управления самосвалом.

Распределение аварий по видам и несчастных случаев со смертельным исходом по травмирующим факторам за 2014 и 2015 гг. представлено в табл. 39.
Распределение аварий по видам и несчастных случаев со смертельным исходом по травмирующим факторам за 2014 и 2015 гг.

<table>
<thead>
<tr>
<th>№ п/п</th>
<th>Вид аварии, смертельных травм</th>
<th>Аварии</th>
<th>+/−</th>
<th>Смертельные травмы</th>
<th>+/−</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Взрыв (горение, вспышки) газа и угольной пыли</td>
<td>3</td>
<td>−3</td>
<td>2</td>
<td>−2</td>
</tr>
<tr>
<td>2</td>
<td>Пожар (подземные/открытые горные работы/поверхность)</td>
<td>3</td>
<td>5</td>
<td>+2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Горный удар</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Внезапный выброс угля, породы, газа</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Разрушение зданий, сооружений, тех. устройств (подземные/открытые горные работы/поверхность)</td>
<td>1/—/—</td>
<td>1/—/—</td>
<td>−1</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Транспорт (подземные/открытые горные работы/поверхность)</td>
<td>3/1/—</td>
<td>3/1/—</td>
<td>+4</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Электроток (подземные/открытые горные работы/поверхность)</td>
<td>1/1/—</td>
<td>2/—/—</td>
<td>−</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Машины и механизмы (подземные/открытые горные работы/поверхность)</td>
<td>3/1/2</td>
<td>4/1/—</td>
<td>−1</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Падения (подземные/открытые горные работы/поверхность)</td>
<td>3/1/1</td>
<td>−/1/1</td>
<td>−3</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Затопления горных выработок, прорыв воды, глины (подземные/открытые горные работы/поверхность)</td>
<td>1/—/—</td>
<td>1/—/—</td>
<td>—</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>Обрушение горной массы, крепи (подземные/открытые горные работы/поверхность)</td>
<td>−/1/—</td>
<td>−/2/—</td>
<td>+1</td>
<td>6/2/—</td>
</tr>
<tr>
<td>12</td>
<td>Отравления, удушье (подземные/открытые горные работы/поверхность)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Другие виды аварий и травм</td>
<td>1/—/—</td>
<td>—</td>
<td>1/—/—</td>
<td>1/—/—</td>
</tr>
<tr>
<td>15</td>
<td>Итого:</td>
<td>8</td>
<td>8</td>
<td>—</td>
<td>26</td>
</tr>
</tbody>
</table>

Распределение смертельного травматизма по видам работ представлено в табл. 40.

Таблица 40

Распределение смертельного травматизма по видам работ (подземные, поверхность, открытые горные работы)

<table>
<thead>
<tr>
<th>Опасные факторы производственного травматизма</th>
<th>Смертельный травматизм 2014—2015 гг.</th>
<th>Подземные горные работы</th>
<th>Техкомплекс поверхности и обогатительные фабрики</th>
<th>Открытые горные работы</th>
<th>Одиничные</th>
<th>Смертельные</th>
<th>Одиничные</th>
<th>Смертельные</th>
<th>Одиничные</th>
<th>Смертельные</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Одиночные травмы при авариях и групповых несчастных случаях</td>
<td>Смертельные травмы</td>
<td>Одиночные травмы при авариях и групповых несчастных случаях</td>
<td>Смертельные травмы</td>
<td>Одиночные травмы при авариях и групповых несчастных случаях</td>
<td>Смертельные травмы</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Взрыв, вспышка, горение газа, угольной пыли</td>
<td></td>
<td>2/ —</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Пожар (эндоген., экзоген.)</td>
<td></td>
</tr>
</tbody>
</table>

© Оформление. ЗАО НТЦ ПБ, 2016
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Подземные горные работы</td>
</tr>
<tr>
<td></td>
<td>Одиночные смертельные травмы</td>
</tr>
<tr>
<td>Горный удар</td>
<td></td>
</tr>
<tr>
<td>Внезапный выброс угля, породы, газ</td>
<td></td>
</tr>
<tr>
<td>Разрушение зданий, тех. сооружений</td>
<td>1/—</td>
</tr>
<tr>
<td>Обрушение горной массы, крепи</td>
<td>4/2</td>
</tr>
<tr>
<td>Транспорт</td>
<td>—/3</td>
</tr>
<tr>
<td>Электроток</td>
<td>1/2</td>
</tr>
<tr>
<td>Машины и механизмы</td>
<td>3/4</td>
</tr>
<tr>
<td>Затопления, прорыв воды, глины</td>
<td>1/—</td>
</tr>
<tr>
<td>Падения</td>
<td>3/—</td>
</tr>
<tr>
<td>Отравление, удушье</td>
<td></td>
</tr>
<tr>
<td>Другие виды</td>
<td>1/—</td>
</tr>
<tr>
<td>Итого:</td>
<td>14/11</td>
</tr>
</tbody>
</table>

Распределение аварий и несчастных случаев со смертельным исходом по территориальным органам Ростехнадзора и субъектам Российской Федерации представлено в табл. 41.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Сибирское управление</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Кемеровская область</td>
<td>7</td>
<td>7</td>
<td>—</td>
<td>19</td>
<td>14</td>
<td>—5</td>
</tr>
<tr>
<td>Новосибирская область</td>
<td>7</td>
<td>7</td>
<td>—</td>
<td>19</td>
<td>14</td>
<td>—5</td>
</tr>
<tr>
<td>Алтайский край</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Забайкальское управление</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Республика Бурятия</td>
<td>1</td>
<td></td>
<td>—</td>
<td>1</td>
<td>—</td>
<td>—1</td>
</tr>
<tr>
<td>Забайкальский край</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Енисейское управление</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Республика Хакасия</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Республика Тыва</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Красноярский край</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Иркутская область (с 2013 г.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Территориальный орган Ростехнадзора |
| | Число аварий | Травмировано смертельно | | | | | |
| | 2014 г. | 2015 г. | +/– | 2014 г. | 2015 г. | +/– |
| Нижне-Донское управление (с 2013 г. Северо-Кавказское упр.) | Ростовская область | — | — | 3 | — | —3 |
| Сахалинское управление | Сахалинская область | — | 1 | — | 1 | — | —1 |
| Дальневосточное управление | Амурская обл. | — | — | 1 | 1 | — |
| | Приморский край | — | — | — | — | — |
| | Хабаровский край | — | — | — | 1 | — | —1 |
| | Еврейская автономная обл. | — | — | — | — | — |
| | Камчатский край | — | — | — | — |
| Печорское управление | Республика Коми | — | — | 3 | — | 3 |
| Межрегиональное технологическое управление | Чукотский АО | — | — | — | 1 | — | 1 |

Итого по угольной промышленности:
8 8 — 26 20 —6

Описание крупных аварий и аварии с групповым несчастным случаем

Причины аварии:
1. Отсутствие эффективного контроля за составом атмосферы выработанного пространства.
2. Отсутствие эффективного контроля за состоянием межлавных целиков в части определения потенциальной пожароопасности с использованием геофизических методов.
3. Отсутствие контроля состояния изолирующих сооружений по контуру выемочного участка лавы.

1 апреля 2015 г. в Разрезе «Заречный» ОАО «СУЭК-Кузбасс» произошла деформация (оползень) вскрышных пород на внешнем отвале № 1, в профильных линиях 62–82. Оползнем разрушена часть ЛЭП-110 кВ, питающей подстанцию 110/35/6 «Северный борт», перекрыт участок автодороги общего пользования г. Новокузнецк — п. Большая Талда, подъездной железнодорожный путь Талдинского ПТУ, перекрыта часть русла реки Кыргай. Нарушен электроэнергоснабжение шахты «Талдинская-Южная» ООО «УК «Талдинская», Таежного и Талдинского полей и промплощадки «Талдинского угольного разреза» филиала ОАО «Кузбассразрезуголь», промышленных объектов ЗАО «Салек» и ООО «РазрезТалГЭК».

Причины аварии:
1. Несоответствие параметров отвала несущей способности его основания.
2. Недостаточно обоснованы параметры устойчивого отвала, разработанные специализированными организациями СФ ВНИМИ и ООО «СИГИ» и принятые ООО «НТЦ-Геотехнология» в проектной документации «Техническое перевооружение участка открытых горных работ «Заречный» с целью поддержания производственной мощности на уровне 2 млн т в год (Дополнение к проекту строительства участка открытых горных работ «Заречный» ОАО «ИК Соколовская»).

3. Сочетание неблагоприятных климатических, орогидрографических, инженерно-геологических и гидрогеологических условий привело к дополнительному водонасыщению пород отвального массива и основания, а также изменению их физико-механических свойств. Совокупность воздействия неблагоприятных метеорологических условий, гидродинамических процессов в теле и основании отвала, а также сейсмических событий оказало существенное влияние на возникновение и развитие оползня в отвале № 1 разреза «Заречный».

11 апреля 2015 г. на шахте им. А.Д. Рубана ОАО «СУЭК-Кузбасс» во время бурения шпура в кровлю выработки для установки канатного анкера в результате фрикционного трения произошло воспламенение слоевого скопления метана у кровли выработки и распространение горения в направлении сопряжения лавы 1212 с вентиляционным штреком 1212, где также произошли вспышка метана и возгорание горючих материалов в куполе. На момент аварии в шахте находилось 211 человек. По команде горного диспетчера работники шахты вышли на поверхность. Пострадавших нет. ВГСЧ на место аварии не вызывалось в течение 5 часов. После получения информации со стационарно установленных датчиков об увеличении концентрации СО руководством шахты было принято решение о вызове ВГСЧ на аварию «Пожар». Авария классифицирована как экзогенный пожар.

Причины аварии:
1. Образование слоевого скопления метана у кровли вентиляционного штрека в районе бурения шпуров и местного скопления метана в куполе на сопряжении очистного забоя лавы с вентиляционным штреком.
2. Отсутствие промывки шпура водой и нагрев металла до температуры воспламенения метана при фрикционном трении буровой штанги о металлические подхваты и горные породы.
3. Производство работ с нарушением требований Руководства по эксплуатации бурового станка — отсутствие подключения к водяной магистрали.
4. Отсутствие в «Паспорте выемки угля, крепления и управления кровлей в очистном забое лавы 1212 пласт Надбайкаимского» технологических решений по усилению крепления кровли вентиляционного штрека глубинными канатными анкерами и мер по предотвращению возникновения фрикционного искрения при бурении шпуров для установки канатных анкеров.
5. Перетяжка и заполнение купола при проходке выработки горючим материалом и его возгорание в результате вспышки.
6. Несвоевременный вызов ВГСЧ (сообщение о вспышке метана поступило в 9 часов 32 минуты, вызов ВГСЧ был произведен в 14 часов 18 минут), что не позволило приступить к тушению экзогенного пожара в начальной стадии.
7. Недостаточный уровень организации и осуществления производственного контроля. При наличии сведений о слоевых и местных скоплениях метана меры по их профилактике специалистами шахты игнорировались.

Принципы аварии:
1. Образование устойчивой аэродинамической связи между пластами III и IV-V.
2. Накопление метана горючей концентрации и последовавшее за этим его высушивание в изолированных выработках пласта III.
3. Отсутствие надлежащего контроля за ранними признаками самонагревания в изолированном пространстве отработанного пласта III, в контуре ранее переведенного в категорию потушенных пожаров № 48, возникшего 01.12.1992 г. (переведен в категорию потушенных приказом № 63 от 18.08.1994 г.), выразившееся в недостаточном количестве контрольных точек и невыполнении графика отбора проб из скважин с поверхности в январе и июне 2015 г.
4. Недостаточный уровень организации и осуществления производственного контроля, что не позволило своевременно выявить и предотвратить риски возникновения аварии.
5. Осушение ранее затопленных выработок пласта III, что привело к интенсификации окислительных процессов угля пласта III при поступлении кислорода в изолированное пространство.
27 декабря 2015 г. на шахте им. А.Д. Рубана ОАО «СУЭК-Кузбасс» произошло подтопление насосной камеры, что повлияло на устойчивость проветривания дренажного конвейерного штрека пл. Байкаимского. После чего дежурным по шахте была задействована позиция «Подтопление горных выработок» плана ликвидации аварий.

Принципы аварии:
1. Эксплуатация главной водоотливной установки шахты при отсутствии исправных резервных насосов.
2. Неукомплектованность участка ПР по ТБ обслуживающим персоналом, достаточным для своевременной очистки приемных колодцев и водосборников насосной камеры Дренажного конвейерного штрека пласта Байкаимского, что не позволило предотвратить затопление насосной камеры в течение 4 часов;
3. Нарушение производственной дисциплины, выразившееся в неправильных действиях ИТР шахты и участка ПР по ТБ при эксплуатации главной водоотливной установки шахты. Специалисты не приняли меры по устранению нарушений: восстановлению работоспособности водоотливных установок № 1, № 2 и очистке приемных колодцев и водосборников насосной камеры Дренажного конвейерного штрека пласта Байкаимского, что не позволило предотвратить затопление насосной камеры.
4. Отсутствие надлежащего производственного контроля за соблюдением требований промышленной безопасности со стороны эксплуатирующей организации.

Основное производственное оборудование на угольных шахтах и угольных разрезах эксплуатируется в удовлетворительном состоянии. Угольными компаниями на протяжении нескольких лет ведется планомерная работа по техническому переоборудованию, внедрению новой техники и технологий, строительству современных технологических комплексов переработки и обогащения сырья.

В то же время продолжают эксплуатироваться технические устройства с продленными сроками эксплуатации. В отношении последних проводятся экспертные обследования. Дальнейшая эксплуатация таких технических устройств осуществляется
при условии выполнения корректирующих мероприятий, предложенных экспертными организациями, или модернизации их систем управления, контроля параметров, электропривода и пр. В итоге преимущественная практика неоднократного продления срока эксплуатации изношенного оборудования посредством проведения экспертизы промышленной безопасности со стороны собственников по-прежнему сохраняется.

На предприятиях действуют разработанные и согласованные в установленном порядке с территориальными органами Ростехнадзора положения об организации и осуществлении производственного контроля при эксплуатации опасных производственных объектов. Имеются выданные в установленном порядке специальные разрешения (лицензии) на лицензируемые виды деятельности.

В соответствии с принятыми правовыми актами и нормативными документами на угольных предприятиях разрабатываются проекты положений вспомогательных горноспасательных команд (ВГК), проводятся обучение и тренировки членов ВГК, ведутся работы по проектированию размещения пунктов переключения в аварийных ситуациях, ведутся работы по расширению функций многофункциональных систем безопасности с учетом возможности использования в системе дистанционного контроля.

Основные показатели надзорной и контрольной деятельности в 2014—2015 гг. представлены в табл. 42.

Таблица 42

<table>
<thead>
<tr>
<th>№ п/п</th>
<th>Показатели надзорной и контрольной деятельности</th>
<th>2014 г.</th>
<th>2015 г.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Число поднадзорных организаций (юридических лиц)</td>
<td>452</td>
<td>311</td>
</tr>
<tr>
<td>2</td>
<td>Число поднадзорных объектов</td>
<td>512</td>
<td>468</td>
</tr>
<tr>
<td>3</td>
<td>Количество инспекторов (фактически), чел.</td>
<td>142</td>
<td>134</td>
</tr>
<tr>
<td>4</td>
<td>Число проведенных обследований, всего</td>
<td>8546</td>
<td>7666</td>
</tr>
<tr>
<td></td>
<td>В том числе</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>в порядке осуществления режима постоянного государственного контроля (надзора)</td>
<td>8030</td>
<td>6995</td>
</tr>
<tr>
<td>5</td>
<td>Число выявленных нарушений</td>
<td>62 147</td>
<td>55 830</td>
</tr>
<tr>
<td>6</td>
<td>Назначено административных наказаний, всего</td>
<td>8484</td>
<td>8824</td>
</tr>
<tr>
<td>6.1</td>
<td>административное приостановление деятельности, в том числе</td>
<td>645</td>
<td>699</td>
</tr>
<tr>
<td>6.1.1</td>
<td>временный запрет деятельности</td>
<td>630</td>
<td>673</td>
</tr>
<tr>
<td>6.2</td>
<td>административный штраф</td>
<td>7832</td>
<td>8117</td>
</tr>
<tr>
<td>7</td>
<td>Общая сумма взысканных штрафов, тыс. руб.</td>
<td>327 878</td>
<td>317 463</td>
</tr>
<tr>
<td>8</td>
<td>Передано материалов в правоохранительные органы на нарушителей требований промышленной безопасности</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

В 2015 г. инспекторским составом горного надзора на опасных производственных объектах угольной промышленности проведено 7666 проверок, в том числе 208 плановых проверок, 463 внеплановые проверки и 995 проверок, проведенных в порядке осуществления режима постоянного государственного контроля (надзора), по итогам которых было выявлено 55 830 нарушений (из них 55 402 нарушения обязатель-
ных требований законодательства, 428 невыполнений предписаний органов государственного контроля (надзора)).

По результатам проверок за 2015 г. наложено 8824 административных наказания, в том числе 7 дискалификаций, 699 административных приостановок деятельнос-
ти, наложено 8117 штрафов (на физических лиц наложено 158 штрафов, на должностных лиц — 7397, на юридических лиц — 562).

Общая сумма штрафов составила 317 463,5 тыс. руб. В том числе 528,5 тыс. руб.
штрафов наложено на граждан, 178 592 тыс. руб — на должностных лиц и
138 343 тыс. руб. — на юридических лиц. Общая сумма уплаченных администра-
тивных штрафов составила 251 733,5 тыс. руб.

Централизованным аппаратом Ростехнадзора выдано 57 лицензий на деятельность по
проведению экспертизы промышленной безопасности, из них 6 — на предоставле-
ние лицензии, 51 — на переоформление лицензии; переоформлена одна лицензия
на эксплуатацию взрывопожароопасных производственных объектов.

Отказано в 9 случаях в переоформлении лицензии на деятельность по проведе-
nию экспертизы промышленной безопасности, в одном случае в предоставлении
лицензии на деятельность по проведению экспертизы промышленной безопасно-
сти, в 3 случаях в переоформлении лицензии на эксплуатацию взрывопожароопас-
ных производственных объектов.

Территориальными органами было выдано 7 лицензий на эксплуатацию взрыво-
pожароопасных производственных объектов, 28 лицензий переоформлено.

На всех предприятиях угольной промышленности, имеющих объекты I или
II класса опасности, на которых ведутся горные работы, созданы и аттестованы в
установленном порядке вспомогательные горноспасательные команды (ВГК).

На угольных предприятиях в соответствии с графиками, согласованными с ко-
мандиром подразделения военизированной горноспасательной части, обслужива-
ющей организацию, проводятся учебные тревоги и учения по плану ликвидации
avарий, в ходе которых с инженерно-техническими работниками отрабатываются
мероприятия по локализации и ликвидации последствий аварий. По результатам
учений определяется достаточность предусмотренных мероприятий и степень под-
готовленности персонала предприятия к действиям в аварийных ситуациях, в том
числе с привлечением вспомогательных горноспасательных команд. Учебные тре-
воги в организации проводятся не реже одного раза в год.

С целью внедрения новых форм и методов контроля, развития и актуализации
риск-ориентированных подходов при осуществлении горного надзора Ростехнад-
zором осуществляется контроль выполнения требований по оснащению угольных
шахт многофункциональными системами безопасности (далее — МФСБ).

МФСБ призвана решать задачи организации безопасного производства, информ-
ацийной поддержки, контроля и управления технологическими и производствен-
ymи процессами в нормальных и аварийных условиях. В настоящее время МФСБ
внедрена в большинстве угольных компаний.

Анализ промышленной безопасности подконтрольных предприятий угольной от-
расли показывает, что в целом состояние безопасности и противоаварийной устой-
чивости угледобывающих предприятий находится на приемлемом уровне и соответ-
ствует результатам, планируемым Программой развития угольной промышленности
России до 2030 года, утвержденной распоряжением Правительства Российской Фе-
дерации от 21 июня 2014 г. № 1099-р (далее — Программа). Величина удельного по-
казателя смертельного травматизма (количество смертельно травмированных шахтеров, приходящееся на 1 млн т добытого угля) в 2015 г. составила 0,053 чел./млн т, что ниже запланированного Программой значения к концу 2015 г. — 0,13 чел./млн т.

Научно-исследовательские работы в области промышленной безопасности

Научно-исследовательские работы в области промышленной безопасности выполняются в рамках исполнения мероприятий «Программы по обеспечению дальнейшего улучшения условий труда, повышения безопасности ведения горных работ, снижения аварийности и травматизма в угольной промышленности, поддержания боеготовности военизированных горноспасательных, аварийно-спасательных частей на 2014—2016 годы», утвержденной Минэнерго России, Минздравсоцразвития России, МЧС России, Ростехнадзором и согласованной Росуглепрофом.

В 2015 г. на основании ранее выполненных НИР разработаны и утверждены:

- Федеральные нормы и правила в области промышленной безопасности «Инструкция по ведению огневых работ в горных выработках, надшахтных зданиях угольных шахт и углеобогатительных фабриках» (приказ Ростехнадзора от 14 октября 2014 № 463, зарегистрирован Минюстом России 9 февраля 2015 г., рег. № 35921);
- Федеральные нормы и правила в области промышленной безопасности «Инструкция по изоляции неиспользуемых горных выработок и выработанных пространств в угольных шахтах и контролю изолирующих перемычек» (приказ Ростехнадзора от 28 ноября 2014 г. № 530, зарегистрирован Минюстом России 9 февраля 2015 г., рег. № 35926);
- Федеральные нормы и правила в области промышленной безопасности «Инструкция по предупреждению эндогенных пожаров и безопасному ведению горных работ на склонных к самовозгоранию пластах угля» (приказ Ростехнадзора от 16 декабря 2015 г. № 517, зарегистрирован Минюстом России 18 января 2016 г., рег. № 40602);
- Федеральные нормы и правила в области промышленной безопасности «Инструкция по порядку действий при локализации и ликвидации последствий аварий на опасных производственных объектах, на которых ведутся горные работы» (приказ Ростехнадзора от 20 ноября 2015 № 475, повторно направлен на регистрацию в Минюст России 5 февраля 2016 г.).

2.2.7.2 Горнорудная и нерудная промышленность, объекты подземного строительства

Государственный горный надзор в течение 2015 г. осуществлялся на объектах добычи, переработки минерального сырья и объектах подземного строительства.

Опасные производственные объекты горной промышленности представлены в табл. 43.

В государственном реестре опасных производственных объектов на 1 января 2016 г. зарегистрировано 3716 объектов горнорудной и нерудной промышленности, в том числе: I класса опасности — 99 объектов, II класса — 757, III класса — 1891 и IV класса — 969.

Государственный горный надзор в соответствии с требованиями федерального законодательства о недрах также осуществлялся и на объектах, исключенных из категории опасных производственных объектов. К их числу относятся объекты, на которых ведутся горные работы, связанные с добычей общераспространенных полезных ископаемых и разработкой россыпных месторождений полезных ископаемых, осуществляемые открытым способом без применения взрывных работ.
Таблица 43

<table>
<thead>
<tr>
<th>№ п/п</th>
<th>Наименование показателя</th>
<th>Объекты ведения горных работ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Итого</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Число поднадзорных эксплуатирующих организаций</td>
<td>1437</td>
</tr>
<tr>
<td>2</td>
<td>Число поднадзорных опасных производственных объектов, в том числе:</td>
<td>3716</td>
</tr>
<tr>
<td>2.1</td>
<td>подземных рудников (шахт)</td>
<td>154</td>
</tr>
<tr>
<td>2.2</td>
<td>карьеров</td>
<td>2732</td>
</tr>
<tr>
<td>2.3</td>
<td>обогатительных, дробильно-сортировочных, агломерационных фабрик</td>
<td>616</td>
</tr>
<tr>
<td>2.4</td>
<td>объектов подземного строительства</td>
<td>149</td>
</tr>
<tr>
<td>2.5</td>
<td>объектов использования недр в целях, не связанных с добычей полезных ископаемых</td>
<td>65</td>
</tr>
</tbody>
</table>

Объем добычи горной массы на опасных производственных объектах горной отрасли по сравнению с предшествующим отчетным периодом вырос на 16 % и составил 1 446,7 млн м³ (в 2014 г. — 1 239 млн м³). В том числе:
- подземным способом — 71,6 млн м³ (в 2014 г. — 69,3 млн м³);
- открытым способом — 1 375,1 млн м³ (в 2014 г. — 1169,7 млн м³).

Динамика объемов добычи горной массы, случаев аварийности и смертельного травматизма отражена на рис. 11.

По сравнению с предшествующим годом на опасных производственных объектах горной отрасли число аварий сократилось на 50 %, число случаев смертельного травматизма сократилось на 21 %, число случаев группового травматизма — на 29 %. Число случаев аварийности и смертельного травматизма на объектах ведения горных работ в 2015 г. является минимальным за последние 15 лет.

В 2015 г. при ведении горных работ произошла одна авария, пострадавших и жертв нет. В 2014 г. были зарегистрированы 2 аварии, в результате которых погиб один человек. Сумма ущерба от аварий в 2015 г. по сравнению с 2014 г. сократилась в 50 раз.

Распределение аварий по видам работ, отраслям горнорудной промышленности и видам происшествий, а также сведения о численности травмированных работников при авариях отражены в табл. 44—48.
Рис. 11. Динамика объемов добычи горной массы, смертельного травматизма и аварийности за 2001–2015 гг.

Таблица 44
Сведения о случаях аварийности и травматизма

<table>
<thead>
<tr>
<th>Наименование</th>
<th>Горная отрасль</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2014 г.</td>
</tr>
<tr>
<td>Аварии</td>
<td>2</td>
</tr>
<tr>
<td>Смертельный травматизм</td>
<td>58</td>
</tr>
<tr>
<td>Групповой травматизм</td>
<td>7</td>
</tr>
<tr>
<td>Сумма ущерба от аварий, млн руб.</td>
<td>16,0</td>
</tr>
</tbody>
</table>

Таблица 45
Аварийность на горных предприятиях по видам работ

<table>
<thead>
<tr>
<th>Год</th>
<th>Количество аварий по видам работ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Открытые</td>
</tr>
<tr>
<td>2015 г.</td>
<td>1</td>
</tr>
<tr>
<td>2014 г.</td>
<td>1</td>
</tr>
</tbody>
</table>

Таблица 46
Распределение аварий по отраслям горной промышленности

<table>
<thead>
<tr>
<th>Отрасль</th>
<th>2014 г.</th>
<th>2015 г.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Черная металлургия</td>
<td>—</td>
<td>1</td>
</tr>
<tr>
<td>Строительные материалы</td>
<td>1</td>
<td>—</td>
</tr>
<tr>
<td>Агрохимический комплекс</td>
<td>1</td>
<td>—</td>
</tr>
</tbody>
</table>

Всего: 2 | 1
Таблица 47

Распределение аварий по травмирующим факторам

<table>
<thead>
<tr>
<th>Травмирующие факторы</th>
<th>2014 г.</th>
<th>2015 г.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Обрушение (в т.ч. оползень)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Затопление</td>
<td>1</td>
<td>—</td>
</tr>
<tr>
<td>Всего:</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Таблица 48

Численность травмированных работников при авариях

<table>
<thead>
<tr>
<th>Отрасль</th>
<th>Количество аварий</th>
<th>Численность травмированных работников</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>всего</td>
</tr>
<tr>
<td>Всего в 2015 г.</td>
<td>1</td>
<td>—</td>
</tr>
<tr>
<td>Черная металлургия</td>
<td>1</td>
<td>—</td>
</tr>
<tr>
<td>Всего в 2014 г.</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Строительный комплекс</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Агрохимический комплекс</td>
<td>1</td>
<td>—</td>
</tr>
</tbody>
</table>

27 мая 2015 г. в карьере, принадлежащем ОАО «Михайловский ГОК», в Курской области (Верхне-Донское управление) в результате оползня отвала рыхлой вскрыши произошло нарушение целостности (повреждение) кирпичной кладки копра подземного дренажного комплекса. Пострадавших и жертв нет, ущерб составил 0,2 млн руб. Причинами аварии стали отступления от требований рабочего проекта отвала, породы скальной вскрыши упорной призмы заменены породами рыхлой вскрыши, что способствовало повышению уровня грунтовых вод в основании отвала и развитию оползня.

Ростехнадзором постоянно контролируется исполнение мероприятий по недопущению дальнейшего затопления подземных выработок, произошедшего в результате аварии 18 ноября 2014 г. на руднике с подземным способом разработки, принадлежащем ОАО «Уралкалий», поднадзорному Западно-Уральскому управлению (Пермская область).

В 2015 г. в горной отрасли зафиксирован рост количества смертельных несчастных случаев, произошедших при работах, проводимых в подземных условиях. На их долю пришлось 80 % случаев смертельного травматизма (табл. 49).

Сведения о травматизме по видам работ

<table>
<thead>
<tr>
<th>Год</th>
<th>Количество несчастных случаев по видам работ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Открытые</td>
</tr>
<tr>
<td>2015 г.</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>19,6 %</td>
</tr>
<tr>
<td>2014 г.</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>29,3 %</td>
</tr>
</tbody>
</table>

Наибольшее число смертельных несчастных случаев зафиксировано на объектах добычи цветных и драгоценных металлов (табл. 50).
Таблица 50

<table>
<thead>
<tr>
<th>Год</th>
<th>Количество несчастных случаев по горной отрасли</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Черная металлургия</td>
</tr>
<tr>
<td>2015 г.</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>13,0%</td>
</tr>
<tr>
<td>2014 г.</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>22,4%</td>
</tr>
</tbody>
</table>

Наибольшее число случаев смертельного травматизма произошло в результате обрыва горной массы и при работе на транспорте. Существенно увеличилось число несчастных случаев со смертельным исходом, произошедших в результате падения с высоты (табл. 51).

Таблица 51

<table>
<thead>
<tr>
<th>Год</th>
<th>Количество несчастных случаев по травмирующим факторам</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Обрушение</td>
</tr>
<tr>
<td></td>
<td>205 г.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>2014 г.</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>29,3%</td>
</tr>
</tbody>
</table>

Высокий уровень смертельного травматизма, связанный с обрушениями горной массы, сохраняется в результате применения в основном ручной обработки заколков при недостаточном использовании кровлеоборочных машин, несоблюдения требований по наблюдению за состоянием кровли и бортов выработок. Причинами роста смертельного травматизма на транспорте являются плохая организация системы производственного контроля, недостаточный контроль за состоянием техники и низкая дисциплина труда.

Примеры наиболее характерных несчастных случаев по травмирующим факторам.

Обрушение горной массы.

10 марта 2015 г. на участке горного капитального строительства подземной дренажной шахты ОАО «Стойленский ГОК» произошло обрушение горной массы, в результате которого крепильщик получил смертельные травмы. Организационными причинами аварии явились несоблюдение паспорта крепления в части выполнения работ по установке опережающего крепления, неудовлетворительный контроль со стороны должностных лиц за ведением проходческих работ.
Работа на транспорте.

18 января 2015 г. в ОАО «Ковдорский ГОК» водитель самосвала двигался со скоростью, превышающей допускаемую инструкцией, переехал предохранительный вал, опрокинулся с уступа, получив в результате падения смертельные травмы. Причиной несчастного случая явилась личная неосторожность пострадавшего, превышившего установленную скорость при управлении машиной и не принявшего мер по ее торможению.

20 сентября 2015 г. в ОАО «Евразруда» машинист электровоза при проведении разгрузки вагонов на комплексе подземного дробления был зажат между кабиной электровоза и опрокидом, получив смертельные травмы. Причинами несчастного случая явились изменения конструкции электрической схемы электровоза без согласования с заводом-изготовителем, устранение из схемы операции по блокировке включения, отсутствие технологического регламента по управлению техническим устройством, нахождение пострадавшего за пределами защитного ограждения в опасной зоне, а также управление электровозом вне кабины.

Работа с механизмами.

3 мая 2015 г. в ЗАО «Серебро Магадана» проходчик пытался установить коронку на вращающуюся буровую штангу, в результате чего получил смертельные ранения. Основная причина несчастного случая — несоблюдение инструкции при замене буровой коронки, отсутствие контроля со стороны лиц технического надзора.

Поражение электрическим током.

3 марта 2015 г. в ПАО «УРАЛКАЛИЙ» машинист горно-выемочной машины при перемещении электрического кабеля, находящегося под напряжением, получил смертельные травмы. Причинами несчастного случая явились несанкционированное подключение электрооборудования, запрещенного к применению в рабочих зонах, личная неосторожность пострадавшего — прикосновение к открытым токоведущим жилам кабеля, находящимся под напряжением.

Отравление.

18 августа 2015 г. в ОАО «Учалинский ГОК» взрывник получил смертельное отравление продуктами взрыва. Причины: отсутствие газового контроля смотровых выработок, отсутствие непрерывного проветривания выработок активной струей воздуха, нахождение пострадавшего во время взрывных работ в непроветренной, загазованной продуктами взрыва выработке.

Падение с высоты.

1 ноября 2015 г. взрывник подземного горного участка ОАО «Рудник «Веселый» при монтаже взрывной магистрали упал в рудоспуск и получил смертельную травму. Причины: нарушение технологии производства работ, начало производства взрывных работ при незаполненном горной массой рудоспуске, личная неосторожность пострадавшего при передвижении по горным выработкам.

Прочие (гидроудар).

13 апреля 2015 г. в АК «АЛРОСА» (ОАО) горный мастер и электрогазосварщик при проведении работ по монтажу водопровода были смыты выбросом потока воды и шлама, получив соответственно смертельную и легкую травмы. Причина: пострадавшие не были своевременно оповещены о заполнении трубопровода водой и продолжили работы.

В 2015 г. произошло 5 групповых несчастных случаев (в 2014 г. — 7). Сократилось общее количество пострадавших, но возросло число погибших в результате групповых несчастных случаев (табл. 52).
Таблица 52

<table>
<thead>
<tr>
<th>Отрасль</th>
<th>Количество случаев</th>
<th>Численность травмированных работников</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>всего</td>
</tr>
<tr>
<td>2015 г.</td>
<td>5</td>
<td>11</td>
</tr>
<tr>
<td>Цветная металлургия</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Добыча драгметаллов</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Росатом</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2014 г.</td>
<td>7</td>
<td>24</td>
</tr>
<tr>
<td>Строительный комплекс</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>Черная металлургия</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>Добыча драгметаллов</td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>

11 сентября 2015 г. на руднике «Октябрьский» ПАО ГМК «Норникель» при подготовке забоя к производству взрывных работ в результате обрушения горной массы мастер горного участка, мастер взрывник и проходчик получили соответственно смертельные и тяжелую травму. Причины: нарушение технологии производства работ, не произведено крепление горной выработки.

21 ноября 2015 г. на подземном руднике ПАО «Приаргунское производственное горно-химическое объединение» электрослесарь, находящийся в стадии алкогольного опьянения, предпринял попытку суицида, намеренно шагнув из движущейся клети в створ ствола. В результате получил при падении тяжелую травму. Пытавшийся его удержать горнорабочий, также находившийся в стадии алкогольного опьянения, упал в створ и погиб. Причины: низкая производственная дисциплина, отсутствие контроля со стороны должностных лиц за деятельностью подчиненных, из-за чего было допущено употребление пострадавшими алкоголя на рабочем месте. Техническая причина: отсутствие в клети приспособлений, исключающих возможность открытия дверей при движении.

Наибольшее число случаев смертельного травматизма (8) произошло на опасных производственных объектах, поднадзорных Межрегиональному технологическому управлению Ростехнадзора, Забайкальскому управлению (7) и Уральскому управлению (7). Допущен рост травматизма на объектах, поднадзорных: Межрегиональному технологическому управлению Ростехнадзора (+ 3 случая), Сибирскому и Забайкальскому управлением (+2 случая). Существенно снизился уровень травматизма на объектах горной отрасли, поднадзорных Уральскому управлению (–6 случаев), Северо-Восточному управлению (–6 случаев) и Енисейскому управлению (–5 случаев).

Распределение аварий и несчастных случаев по территориальным органам и субъектам Российской Федерации представлено в табл. 53.

По результатам проведенных расследований основные причины аварий и случаев смертельного травматизма распределены следующим образом:

40 % — нарушения технологии производства работ;
27 % — неудовлетворительная организация производства работ;
16 % — низкий уровень производственного контроля;
13 % — нарушение работником трудового распорядка и дисциплины труда;
4 % — низкий уровень знаний требований норм и правил безопасности.
<table>
<thead>
<tr>
<th>Территориальные управления Ростехнадзора, субъекты Российской Федерации</th>
<th>Аварийность</th>
<th>Групповой травматизм</th>
<th>Смертельный травматизм</th>
</tr>
</thead>
<tbody>
<tr>
<td>МГУ Ростехнадзора</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Таймырский АО</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Чукотский АО</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Кавказское управление</td>
<td>—</td>
<td>—</td>
<td>1</td>
</tr>
<tr>
<td>Республика Северная Осетия — Алания</td>
<td>—</td>
<td>—</td>
<td>1</td>
</tr>
<tr>
<td>Верхне-Донское управление</td>
<td>—</td>
<td>1</td>
<td>—</td>
</tr>
<tr>
<td>Белгородская область</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Липецкая область</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Курская область</td>
<td>—</td>
<td>1</td>
<td>—</td>
</tr>
<tr>
<td>Приокское управление</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Тульская область</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Калужская область</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Северо-Западное управление</td>
<td>1</td>
<td>—</td>
<td>1</td>
</tr>
<tr>
<td>г. Санкт-Петербург</td>
<td>—</td>
<td>—</td>
<td>1</td>
</tr>
<tr>
<td>Ленинградская область</td>
<td>1</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Мурманская область</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Новгородская область</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Северо-Кавказское управление</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Ростовская область</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Печорское управление</td>
<td>— —</td>
<td>1</td>
<td>—</td>
</tr>
<tr>
<td>Республика Коми</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Западно-Уральское управление</td>
<td>1</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Пермский край</td>
<td>1</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Республика Башкортостан</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Оренбургская область</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Уральское управление</td>
<td>—</td>
<td>—</td>
<td>1</td>
</tr>
<tr>
<td>Свердловская область</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Челябинская область</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Курганская область</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Сибирское управление</td>
<td>—</td>
<td>—</td>
<td>2</td>
</tr>
<tr>
<td>Алтайский край</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Кемеровская область</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Забайкальское управление</td>
<td>—</td>
<td>—</td>
<td>1</td>
</tr>
<tr>
<td>Республика Бурятия</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Забайкальский край</td>
<td>—</td>
<td>—</td>
<td>1</td>
</tr>
<tr>
<td>Енисейское управление</td>
<td>—</td>
<td>—</td>
<td>2</td>
</tr>
<tr>
<td>Иркутская область</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Республика Хакасия</td>
<td>—</td>
<td>—</td>
<td>2</td>
</tr>
<tr>
<td>Дальневосточное управление</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Амурская область</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Хабаровский край</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Северо-Восточное управление</td>
<td>—</td>
<td>—</td>
<td>1</td>
</tr>
<tr>
<td>Магаданская область</td>
<td>—</td>
<td>—</td>
<td>1</td>
</tr>
<tr>
<td>Ленское управление</td>
<td>—</td>
<td>—</td>
<td>1</td>
</tr>
<tr>
<td>Республика Саха (Якутия)</td>
<td>—</td>
<td>—</td>
<td>1</td>
</tr>
<tr>
<td>Итого:</td>
<td>2</td>
<td>1</td>
<td>7</td>
</tr>
</tbody>
</table>
Наибольшее количество случаев аварийности и травматизма связано с нарушением технологии проведения работ: отсутствие крепи в выработках при ведении горных работ, что повлекло гибель людей вследствие обрушения горной массы, возобновление работ в выработках до окончания срока их проветривания, в результате чего работники получили отравление газообразными продуктами взрыва.

Значительное количество несчастных случаев связано с неудовлетворительной организацией горных работ, несогласованными действиями работников, несвоевременным оповещением о начале опасных производственных операций, приведших к гибели людей.

Часто причиной несчастных случаев являлись низкий уровень производственно-государственного контроля за обеспечением выполнения требований промышленной безопасности, нарушения работниками трудового распорядка и дисциплины труда, грубые нарушения требований промышленной безопасности в состоянии алкогольного опьянения.

Отмечены случаи смертельного травматизма из-за допуска к работам на опасных производственных объектах работников, не имеющих необходимой квалификации, не прошедших обучения и инструктажа до начала работ.

Расследование причин несчастных случаев проводилось комиссиями с участием сотрудников территориальных органов Ростехнадзора. Некоторые из представленных актов расследования аварий, смертельных и групповых несчастных случаев не соответствуют предъявляемым требованиям.

В ряде случаев не определены истинные причины случаев аварийности и травматизма. Например, в актах расследования случаев, произошедших 19 января 2015 г. с взрывником-стажером в ОАО «СИБИРЬ — ПОЛИМЕТАЛЛЫ» (поднадзорно Сибирскому управлению), 11 февраля 2015 г. с взрывником в ЗАО «Серебро Магадана» (поднадзорно Северо-Восточному управлению), 13 июня 2015 г. с машинистом скреперной лебедки ОАО «Рудник «Веселый» (поднадзорно Сибирскому управлению) в качестве причины несчастных случаев указано внезапное обрушение горной массы. Действительными причинами смертельного травматизма в перечисленных случаях явились соответственно: низкий уровень производственного контроля, вызвавшийся в некачественном устранении заколов, отсутствие мер по наблюдению и управлению кровлей выработки на тектонически активных участках и нарушение проектной и технологической документации на проходку горной выработки.

Не установлены лица, ответственные за случившееся. Например, в акте расследования несчастного случая от 11 февраля 2015 г. с взрывником в ЗАО «Серебро Магадана» (Северо-Восточное управление) виновным указан сотрудник, находившийся на момент происшествия в отпуске с последующим увольнением.

В ряде случаев указанные в актах расследования мероприятия не обеспечивают устранение причин аварий и несчастных случаев. Так, в акте расследования несчастного случая от 3 марта 2015 г. с машинистом ПАО «УРАЛКАЛИЙ» (поднадзорно За-падно-Уральскому управлению) среди причин указано незанесение изменений в электрической цепи контактной станции электропоезда, что вызвало нарушение схемы управления. В то же время среди мероприятий по устранению причин несчастного случая отсутствует проведение обследований электрооборудования на этом и других технических устройствах рудника с целью устранения несанкционированных изменений. В акте расследования несчастного случая от 11 февраля 2015 г. с взрывником в ЗАО «Серебро Магадана» (Северо-Восточное управление) среди причин несчастного случая указана недостаточность существующих на руднике мер без-
опасности при ведении подземных горных работ, а в плане мероприятий не предусмотrena разработка дополнительных мер безопасности.

Указанные недоработки комиссий по расследованию создают предпосылки для повторения аварий и несчастных случаев на производстве.

В 2015 г. государственный горный надзор осуществлялся силами 163 инспекторов территориальных органов Ростехнадзора. По сравнению с предыдущим годом численность инспекторского состава сократилась на 20 %. При этом 84 % инспекторов выполняют функции и в других видах надзора (маркшейдерский контроль, надзор за взрывными работами и другие). Сравнение основных показателей контрольной деятельности государственного горного надзора за 2014 и 2015 гг. приведено в табл. 54.

Таблица 54

<table>
<thead>
<tr>
<th>Показатели надзорной деятельности</th>
<th>2014 г.</th>
<th>2015 г.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Количество занятых штатных единиц, выполняющих функции государственного горного надзора</td>
<td>202</td>
<td>163</td>
</tr>
<tr>
<td>Общее количество проведенных проверок</td>
<td>2440</td>
<td>2791</td>
</tr>
<tr>
<td>Выявлено правонарушений</td>
<td>12 981</td>
<td>13 719</td>
</tr>
<tr>
<td>Общее количество юридических лиц, в ходе проведения проверок которых выявлены нарушения</td>
<td>615</td>
<td>647</td>
</tr>
<tr>
<td>Общее количество административных наказаний, наложенных по итогам проверок:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>в т.ч. штрафов на юридическое лицо</td>
<td>1675</td>
<td>1813</td>
</tr>
<tr>
<td>в т.ч. административное приостановление деятельности</td>
<td>275</td>
<td>367</td>
</tr>
<tr>
<td>Общая сумма наложенных административных штрафов, млн руб.</td>
<td>77,1</td>
<td>103,0</td>
</tr>
</tbody>
</table>

Соотношение показателей контрольно-надзорной деятельности в 2014 и 2015 гг. следующее. Число проверок увеличилось на 14 %, количество выявленных нарушений увеличилось на 6 %. Общее количество вынесенных административных наказаний возросло на 8 %, количество штрафов на юридических лиц увеличилось на 33 %, сумма наложенных штрафов увеличилась на 34 %, число случаев приостановления деятельности возросло на 2 %.

Территориальные управления Ростехнадзора при выявлении правонарушений недостаточно применяют полномочия, определенные Кодексом Российской Федерации об административных правонарушениях (КоАП РФ). Общее число юридических лиц, при проведении проверок которых выявлены правонарушения, составляет 647, а число наложенных штрафов на юридических лиц, допустивших нарушение, — 367. Меры, предусмотренные КоАП РФ за правонарушения, были применены лишь в 57 % случаев их выявления (в 2014 г. — в 45 %).

В 2015 г. специалистами центрального аппарата совместно с работниками территориальных органов проведена проверка АО «Гайский горно-обогатительный комбинат». Всего проверено 4 опасных производственных объекта: рудник с подземным способом разработки, карьер «Осень», фабрика обогатительная, склад взрывчатых материалов. Выявило 163 нарушения, в том числе 66 нарушений обязательных требований законодательства. Назначено 2 административных наказания в виде административного приостановления деятельности (эксплуатация самосвала на 30 суток и эксплуатация участка очистных и горно-подготовительных работ). Наложены
штрафы на сумму 200 тыс. руб. Привлечены к административной ответственности за нарушение требований промышленной безопасности: юридическое лицо АО «Гайский ГОК» (составлено 3 протокола, сумма наложенных штрафов — 1300 тыс. руб.) и 20 должностных лиц — на общую сумму 485 тыс. руб. Общая сумма наложенных штрафов — 1785 тыс. руб.

Системные нарушения, выявленные на проверенных объектах:
отсутствует на опасных производственных объектах система производственного контроля за соблюдением требований промышленной безопасности;
не соблюдаются установленные требования при эксплуатации зданий, оборудования и технических устройств;
не соблюдаются требования по проведению обязательной государственной экспертизы проектной документации;
не соблюдается установленный порядок строительства и ввода в эксплуатацию объектов (отсутствуют разрешительные документы);
отсутствует контроль со стороны руководителей взрывных работ за хранением, применением и учетом взрывчатых материалов промышленного назначения при производстве взрывных работ.

Органами Ростехнадзора в 2015 г. рассмотрены материалы на оформление 32 лицензий на деятельность по эксплуатации взрывопожароопасных производственных объектов ведения горных работ. По результатам рассмотрения предоставлено 6 лицензий, переоформлено 19, отказано в предоставлении лицензии в 7 случаях.

Наличие лицензии и соблюдение лицензиатами лицензионных требований и условий проверяются территориальными органами Ростехнадзора при проведении плановых и внеплановых проверок.

Органами государственного горного надзора контролируются разработка систем управления промышленной безопасностью организациями, эксплуатирующими опасные производственные объекты горнорудной промышленности, обращения взрывчатых материалов и ведения взрывных работ I, II классов опасности. Из 646 организаций, эксплуатирующих опасные производственные объекты горнорудной промышленности, обращения взрывчатых материалов и ведения взрывных работ I, II классов опасности, системы управления промышленной безопасностью созданы в 610, что составляет 94 %.

Из 315 организаций, эксплуатирующих опасные производственные объекты горнорудной промышленности I, II классов опасности, вспомогательные горноспасательные команды созданы в 266, что составляет 84 % от их общего числа, при этом из созданных вспомогательных горноспасательных команд не аттестованы 39.

В ходе проведения проверок осуществляется контроль наличия договора обязательного страхования гражданской ответственности за причинение вреда в резуль-
тате аварии или инцидента на опасном производственном объекте, заключенного в соответствии с требованиями законодательства Российской Федерации об обязательном страховании гражданской ответственности владельца опасного объекта за причинение вреда в результате аварии на опасном объекте.

Объектом обязательного контроля является:
- наличие Положения о производственном контроле за соблюдением требований промышленной безопасности проверяется территориальными органами на каждом горнодобывающем предприятии;
- обязательное заключение эксплуатирующими организациями договоров на оказание услуг по локализации и ликвидации последствий аварий и спасению пострадавших с профессиональными аварийно-спасательными службами или формированием в целях реализации мероприятий по защите и безопасности опасных производственных объектов при возникновении аварийных ситуаций;
- разработка ежегодно обновляемых планов локализации и ликвидации возможных аварий, а также графиков проведения противоаварийных тренировок.

На поднадзорных предприятиях создаются нештатные и штатные аварийно-спасательные формирования, оснащенные необходимыми средствами индивидуальной защиты, техникой и инструментами для локализации и ликвидации аварийных ситуаций. Организации, эксплуатирующие взрывопожароопасные производственные объекты, оснащены средствами оповещения и связи при возникновении аварии (телефонная, звуковая сирена, громкоговорящая связь, локальные системы оповещения населения), внедряются системы позиционирования. Созданы резервы финансовых средств и материальных ресурсов для локализации и ликвидации последствий аварий в соответствии с законодательством Российской Федерации. Проводятся тренировочные занятия с персоналом по обучению действиям в случае возникновения возможных аварийных ситуаций.

Территориальными управлениями Ростехнадзора повышена требовательность при оценке готовности организаций горной отрасли к локализации и ликвидации последствий аварий. В отчетном периоде проведено 33 проверки деятельности вспомогательных горноспасательных команд, при этом выявлено 27 нарушений по состоянию их готовности и техническому оснащению. Проведено 160 учебных тревог. В 2014 г. проведено 10 проверок деятельности вспомогательных горноспасательных команд, выявлено 9 нарушений, проведено 77 учебных тревог.

Распорядительными документами предприятий определен порядок проведения антитerrorистических мероприятий, в том числе предотвращающих возможность несанкционированного вмешательства в технологический процесс, работу систем противоаварийной защиты, сигнализации и оповещения, а также ведения учета поступлений и расходования опасных веществ на объектах. Проводятся проверки охраны и технологических служб в части выполнения разработанных антитerrorистических мероприятий, соблюдения необходимого пропускного режима, обеспечения охраны объектов.

Среди основных проблем обеспечения безопасности горнодобывающих предприятий:
- изношенностность производственных фондов и несвоевременное их обслуживание, ремонт и обновление, эксплуатация транспорта и оборудования с истекшим нормативным сроком, многократно продлеваемым экспертизами промышленной безопасности;
неукомплектованность эксплуатирующих организаций квалифицированными специалистами по основным техническим специальностям;
отсутствие российского горнопромышленного машиностроения и вызванная этим зависимость от иностранных поставщиков по закупке оборудования, техники и запасных частей.
Для повышения эффективности надзорной деятельности, снижения уровня аварийности и травматизма на опасных производственных объектах ведения горных работ при проведении контрольно-надзорных мероприятий необходимо:
на опасных производственных объектах I и II классов опасности уделять внимание наличию и функционированию системы управления промышленной безопасности и системы производственного контроля;
на поднадзорных опасных производственных объектах I и II классов опасности взять под контроль наличие систем позиционирования горноспасательных команд, а также соответствие планов мероприятий по локализации и ликвидации последствий аварий установленным требованиям;
осуществлять контроль за наличием у работников на поднадзорных предприятиях специального профильного образования и квалификации;
с целью повышения ответственности за состояние промышленной безопасности на опасных производственных объектах по итогам проведенных расследований аварий и несчастных случаев привлекать к административной ответственности должностных и юридических лиц, допустивших нарушения требований промышленной безопасности, приведшие непосредственно к угрозе жизни и здоровью людей;
распространять положительный опыт поднадзорных организаций, связанный с модернизацией и импортозамещением технических устройств и оборудования.

2.2.8. Маркшейдерские работы и безопасность недропользования
Государственный маркшейдерский контроль за безопасным ведением работ, связанных с пользованием недрами и маркшейдерскими работами, осуществлялся в отношении 2899 организаций и 194 628 объектов.
Основное внимание в надзорной и контрольной деятельности в отчетном периоде уделялось:
а) наличию у пользователей недр:
лицензий на право пользования недрами;
лицензий на производство маркшейдерских работ;
установленной геолого-маркшейдерской документации и качестве ее исполнения;
проектной документации на разработку месторождений полезных ископаемых, утвержденной в установленном порядке;
утвержденных планов развития горных работ на текущий период;
документов, удостоверяющих уточненные границы горных отводов;
б) контролю за соответствием фактического состояния горных работ техническому проекту и плану развития горных работ;
в) ведению инструментальных маркшейдерских наблюдений за состоянием горных отводов, проявлениями геодеформационных процессов;
г) маркшейдерскому учету объемов добычи полезных ископаемых;
д) выполнению мероприятий по охране зданий, сооружений и природных объектов от вредного влияния горных работ;
Показатели надзорной деятельности государственного маркшейдерского контроля представлены в табл. 55.

Таблица 55

<table>
<thead>
<tr>
<th>Наименование показателей</th>
<th>2014 г.</th>
<th>2015 г.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Число поднадзорных организаций</td>
<td>2985</td>
<td>2899</td>
</tr>
<tr>
<td>Количество проведенных обследований</td>
<td>1797</td>
<td>2076</td>
</tr>
<tr>
<td>Количество выявленных нарушений</td>
<td>4773</td>
<td>4854</td>
</tr>
<tr>
<td>Количество наложенных административных наказаний</td>
<td>697</td>
<td>723</td>
</tr>
<tr>
<td>Общая сумма штрафов, тыс. руб.</td>
<td>46 791</td>
<td>47 871</td>
</tr>
</tbody>
</table>

В отчетный период по сравнению с предыдущим количество проведенных проверок возросло на 16 %, выявленных нарушений — на 2 %, наложенных административных наказаний — на 4 %. Сумма наложенных административных штрафов за выявленные при проверках правонарушения увеличилась на 2 %.

Территориальными органами Ростехнадзора было рассмотрено 5898 планов развития горных работ, 992 проекта на производство маркшейдерских работ, 2716 проектов горных отводов, 11 279 материалов на ликвидацию (консервацию) объектов, связанных с пользованием недрами, включая ликвидацию (консервацию) скважин различного назначения (нефтегазодобывающих, разведочных, наблюдательных).

В соответствии с федеральным законодательством о недрах проводились проверки в части безопасного недропользования и маркшейдерского обеспечения горных работ в организациях, осуществляющих разработку месторождений общераспространенных полезных ископаемых открытым способом без применения взрывных работ.

Внеплановые проверки проводились в отношении соискателей лицензий на производство маркшейдерских работ, а также в целях контроля за выполнением пользователями недр ранее выданных предписаний.

По результатам проверок юридические и должностные лица организаций, допустившие нарушения установленных требований, привлекались к административной ответственности в соответствии со статьями Кодекса Российской Федерации об административных правонарушениях (КоАП РФ).

Основными нарушениями требований в области безопасного ведения работ, связанных с пользованием недрами, и маркшейдерского обеспечения горных работ являются:

- несоблюдение требований по технологии ведения работ при реализации технических проектов, планов развития горных работ, иной документации на осуществление работ, связанных с пользованием недрами;
- нарушение лицензионных требований и условий при производстве маркшейдерских работ;
- нарушение технических требований и условий по производству маркшейдерских работ;
- невыполнение в срок предписаний органов государственного горного надзора.

Ленским и Кавказским управлениями установлено на поднадзорных объектах невыполнение в срок предписаний органов государственного горного надзора.
Дальневосточным, Енисейским, Забайкальским управлениями выявлены такие нарушения, как: несвоевременное выполнение намеченных мероприятий по безо-
пасному ведению горных работ, игнорирование указаний маркшейдерских служб
организаций, отсутствие в штате предприятий квалифицированных специалистов
горного профиля, в том числе маркшейдеров.

В отчетном периоде государственный маркшейдерский контроль осуществля-
лся во взаимодействии с другими надзорными органами: Прокуратурой Российской
Федерации, ФНС России, МВД России.

Центральный аппарат Ростехнадзора осуществлял организационно-методиче-
ское руководство деятельностью территориальных органов. Разъяснялись вопросы
применения нормативных правовых актов, в том числе по реализации требований
Правил подготовки и оформления документов, удостоверяющих уточненные грани-
цы горного отвода и Правил подготовки, рассмотрения и согласования планов и
схем развития горных работ по видам полезных ископаемых, утвержденных поста-
новлениями Правительства Российской Федерации в 2015 г.

Геолого-маркшейдерское обеспечение горных работ при добыче полезных иско-
pаемых и строительстве подземных сооружений в целом удовлетворяет требовани-
ym законодательства и нормативных правовых актов.

Большинство поднадзорных предприятий имеют собственные геолого-марк-
шейдерские службы. Сервисное маркшейдерское обслуживание осуществляется на
предприятиях, разрабатывающих месторождения общераспространенных полезных
ископаемых открытым способом.

В целях предотвращения аварийных ситуаций и производственного травматизма
маркшейдерские службы организаций уведомляют руководителей предприятий
и лиц технического надзора о ведении горных работ с отклонениями от проектной
документации и планов развития горных работ.

К числу сведений, подлежащих обязательному уведомлению, относятся: нару-
шения параметров рабочих площадок разрабатываемых уступов; наличие заколов
в кровле горных выработок и трещин на уступах; приближение горных работ к гра-
ницам опасных по прорыву воды и газов зон, к объектам газопроводов и нефтепро-
водов, водоемам и другим сооружениям.

Маркшейдерские службы организаций принимают участие в подготовке мер по
охране зданий, сооружений и природных объектов от влияния горных работ. Марк-
шейдерскими службами осуществляются наблюдения за откосами карьеров и отва-
лов на предмет выявления деформаций и оползневых явлений. Организованы марк-
шейдерские наблюдения за развитием геомеханических, геодинамических и геокри-
ологических процессов.

На объектах, поднадзорных Центральному управлению Ростехнадзора, прово-
дятся плановые работы по созданию и реконструкции опорных маркшейдерских
геодезических сетей, например, на объектах ОАО «Калининградский карьер», ООО
«Альфа», ООО «Карьер Душеново».

На объектах, поднадзорных Волжско-Окскому управлению, таких, как: ЗАО «ГОТХ», ООО «НРПЦ», ООО «РНИИЦ», ООО «Пешеланский гипсовый завод»
внедряются современные компьютерные технологии ведения маркшейдерских ра-
бот. Предприятиями, поднадзорными Центральному управлению, ООО «Дорстрой-
sинтез», ООО «К-Поташ Сервис», ОАО «Холсим (Рус) СМ», приобретаются новые
маркшейдерские приборы.
Организации, поднадзорные Дальневосточному управлению, планомерно переходят на цифровые геодезические приборы (электронные тахеометры, нивелиры, GPS) и цифровое исполнение горно-графической документации, что повышает точность измерений, упрощает, ускоряет и систематизирует работу специалистов маркшейдерских служб.

По сравнению с 2014 г. улучшилась ситуация в части соблюдения требований о прохождении специалистами маркшейдерских служб курсов повышения квалификации.

В 2015 г. при производстве маркшейдерских работ имели место нарушения установленных требований.

ООО «ЕвроХим-Усольский калийный комбинат» при строительстве клетевого ствола допустили нарушение проектных решений по установке нижнего венца и монтаже армировки ствола. Не составлялись вертикальные разрезы, отображающие фактическое положение стенок ствола и необходимые горизонтальные сечения, не обеспечивались требования по закладке и сохранности осевых и опорных пунктов маркшейдерской сети, расположенных на территории производственно-хозяйственной деятельности предприятия. Перед использованием опорных пунктов не выполнялись контрольные измерения углов и длин линий, не делались соответствующие записи в журналах измерений.

ООО «Дайльманн Ханиэль Шахтострой» проводило маркшейдерское обеспечение объектов подземного строительства, принадлежащих ООО «ЕвроХим-Усольский калийный комбинат» и ПАО «Уралкалий» (Верхнекамское месторождение калийно-магниевых солей, Пермский край), с нарушениями установленных требований. Западно-Уральским управлением возбуждено дело об административном правонарушении в отношении должностного лица этой организации.

При проверке ПАО «Уралкалий» Западно-Уральским управлением установлено, что проект «Мониторинга геологической среды Верхнекамского соленосного бассейна на 2014–2018 годы» не согласован в установленном порядке с Роснедра. В проектной документации отсутствуют расчеты по уточнению мер охраны объектов застройки над блоком отработки запасов на руднике СКРУ-1 ПАО «Уралкалий» и не обеспечена сохранность актов обследования камер после проведения закладочных работ. По итогам проверки главный маркшейдер ПАО «Уралкалий» привлечен к административной ответственности.

Отмечались случаи невыполнения предписаний маркшейдерской службы в части несоблюдения требований по обеспечению безопасного ведения работ в опасной зоне.

Межрегиональным технологическим управлением Ростехнадзора установлено, что одной из причин группового несчастного случая со смертельным исходом на руднике «Октябрьский» ЗФ ОАО «ГМК «Норильский никель» явилось невыполнение предписывающих указаний маркшейдерской службы.

Нехватка специалистов-маркшейдеров либо недостаточная квалификация специалистов маркшейдерских служб предприятий приводит к нарушению требований нормативных правовых актов по производству маркшейдерских работ и, как следствие, к созданию аварийных ситуаций. Например, по информации Межрегионального технологического управления главный инженер и начальник участка «Тиссен Шахтбау ГмбХ» (г. Норильск) в нарушение установленных требований не были своевременно уведомлены маркшейдерской службой о подходе горных работ к опасной зоне.
Годовой отчет о деятельности Федеральной службы

При проведении контрольно-надзорных мероприятий выявлены случаи, когда обслуживающими маркшейдерскими организациями не выполнялся полный комплекс маркшейдерских наблюдений, необходимый для обеспечения нормального технологического цикла горных работ, не обеспечивались требования к составу и качеству горной графической документации.

Западно-Уральским и Межрегиональным технологическим управлениями выявлены нарушения в части учета объемов горных разработок, требований к ведению горной графической документации, наличия книг учета движения горной массы, выполнения работ по выносу контуров вскрышных работ, периодичности выполнения тахеометрических съемок отвалов, правильности оформления журналов измерений и ведомостей вычислений.

В 2015 г. в Ростехнадзор поступило 345 заявлений на оформление и переоформление лицензий на производство маркшейдерских работ, по результатам рассмотрения которых оформлено 256 лицензий.

Территориальными управлениями по мере поступления заявлений от соискателей лицензий на производство маркшейдерских работ проводились внеплановые проверки юридических лиц и индивидуальных предприимателей по соблюдению лицензионных требований и условий по производству маркшейдерских работ.

Лицензиатами и соискателями лицензий в основном соблюдаются лицензионные требования и условия по производству маркшейдерских работ.

Анализ осуществления лицензирования производства маркшейдерских работ и результатов лицензионного контроля показал, что наиболее характерными нарушениями лицензионных требований и условий являются:

- несоблюдение требований по аттестации специалистов;
- ведение маркшейдерских работ без проектной документации;
- отсутствие аттестации в области маркшейдерского обеспечения горных работ;
- несвоевременное повышение квалификации специалистов.

Анализ результатов контрольно-надзорных мероприятий по проверке соблюдения пользователями недр требований по технологии ведения горных работ показал, что в целом работы осуществляются в соответствии с проектной и другой технологической документацией, планами развития горных работ.

К числу наиболее характерных нарушений, допущенных организациями, разрабатывающими твердые полезные ископаемые, относятся: несоблюдение параметров технологических автомобильных дорог; несоблюдение календарных планов развития горных работ в части отработки месторождений по направлениям; невыполнение запланированных объемов вскрышных, добычных работ и рекультивации земель, а также несоответствие фактически применяемых технических устройств предусмотренной проектной документацией.

Планы развития горных работ подлежат согласованию с органами Ростехнадзора. Основными причинами отказа в согласовании органами государственного горного надзора планов развития горных работ являются:
несоответствия в параметрах горных работ, указанных в плане развития горных работ и предусмотренных техническим проектом;
отсутствие лицензии на эксплуатацию взрывопожароопасных и химически опасных производственных объектов;
отсутствие аттестации вспомогательных горнорабочих команд;
отсутствие документов, удостоверяющих уточненные границы горных отводов.
КоАП РФ не определены меры административной ответственности за проведение горных работ без согласованного в установленном порядке плана развития горных работ. Это определяет неэффективность осуществления контроля за исполнением планов развития горных работ на объектах добычи россыпных и общераспространенных полезных ископаемых без производства взрывных работ. Центральным аппаратом Ростехнадзора подготовлены предложения для внесения изменений в КоАП Российской Федерации, устанавливающие ответственность за отсутствие и неисполнение планов развития горных работ.

В связи с произошедшими крупными техногенными авариями на рудниках БКПРУ-1 в октябре 2006 г. и СКРУ-2 в ноябре 2014 г. ПАО «Уралкалий», поднадзорных Западно-Уральскому управлению, проводятся мероприятия по ликвидации последствий аварий.

В соответствии с решением Правительственной комиссии по недопущению негативных последствий техногенной аварии, вызванной затоплением рудника Верхнекамского месторождения калийно-магниевых солей в Пермском крае, создана и под контролем Ростехнадзора реализуется система комплексного мониторинга. Для организации мероприятий по предотвращению угрозы безопасных условий жизнедеятельности населения, предупреждению и устранению негативного воздействия на окружающую среду, здания и сооружения, минимизации негативных последствий аварий осуществляется комплекс наблюдений, включающий спутниковые, маркшейдерские, сейсмологические, геофизические, газогеохимические, гидрогеологические виды наблюдений.

ПАО «Уралкалий» с привлечением специализированных научных организаций Горного института Уральского отделения РАН и ОАО «Галургия» и при участии Ростехнадзора сформирован и реализуется план первоочередных мероприятий по ликвидации и минимизации последствий техногенной аварии на руднике СКРУ-2 с обоснованием превентивных мер безопасности при ведении работ. В рамках его реализации введена в действие система водопонижения, завершено формирование противоволновой завесы для танкирования пустот вокруг зоны обрушения, осуществляется закачка цементного раствора в скважины с одновременной засыпкой провала глинистым материалом и закачкой в провал многокомпонентного глинистого раствора. Ведутся работы по усилению гидроизоляционного сооружения между смежными шахтными полями СКРУ-1 и СКРУ-2. Для снижения негативного воздействия подработки на объекты земной поверхности осуществляется закладка выработанного пространства под железной дорогой Соликамск — Березники и пунктом хранения отходов ОАО «Соликамский магниевый завод».

В целях оперативного решения возложенных на Правительственную комиссию задач созданы две рабочие группы: по анализу комплексного мониторинга ситуации, связанной с техногенной аварией на руднике БКПРУ-1, и по ликвидации рудника БКПРУ-1. В состав рабочих групп включены сотрудники Ростехнадзора, Минприроды России, Роснедра, МЧС России, ПАО «Уралкалий» и других федеральных ор-
Годовой отчет о деятельности Федеральной службы ганов исполнительной власти и организаций. Правительственной комиссией разработаны и утверждены положения о рабочих группах. Руководство деятельностью обеих групп решением Правительственной комиссии возложено на Ростехнадзор.

В соответствии с утвержденными планами работы проведено 4 заседания рабочих групп, на каждом из которых рассматривались вопросы реализации плана первоочередных мероприятий по ликвидации и минимизации последствий техногенной аварии на руднике СКРУ-2.

О результатах комплексного мониторинга, реализации плана первоочередных мероприятий по ликвидации аварийной ситуации на руднике СКРУ-2 и деятельности возглавляемых Ростехнадзором рабочих групп ежеквартально докладывается Правительству Российской Федерации.

В 2015 г. ликвидация и консервация объектов, связанных с пользованием недрами, осуществлялась в соответствии с утвержденными в установленном порядке проектами, имеющими положительное заключение экспертизы промышленной безопасности. В состав проектной документации включались мероприятия по обеспечению промышленной безопасности, охраны недр и окружающей среды.

В то же время имели место случаи нарушения требований проектной документации по ликвидации объектов.

Западно-Уральским управлением при проверке соблюдения ОАО «Гипсополимер» проектных решений по ликвидации карьера установлено наличие на участках остановленных работ сдвоенных уступов, не предусмотренных проектом. В нарушение установленных требований в карьере не производятся осмотры и инструментальные наблюдения за состоянием бортов, откосов и уступов карьера. Не подготовлена горная графическая документация, подлежащая постоянному хранению, включая план земной поверхности территории производственно-хозяйственной деятельности горного предприятия, план расположения пунктов маркшейдерской опорной и геодезической сети, картограммы расположения планшетов съемок земной поверхности в соответствии с установленными требованиями к чертежам горной графической документации. Проектом консервации не установлены предельные углы откосов (углы устойчивости) временно консервируемых участков бортов карьера, отсутствуют мероприятия по безопасному формированию временно нерабочих бортов.

Отмечен случай несанкционированного затопления шахты «Енисейская» без утверждения проектных решений по ее ликвидации.

Анализ нарушений, выявленных при осуществлении государственного надзора за безопасным ведением работ, связанных с пользованием недрами, показал, что наиболее характерными являются: нарушения требований по технологии ведения горных работ и нарушения лицензионных требований и условий при производстве маркшейдерских работ. Основными причинами нарушений являются несвоевременное выполнение мероприятий по безопасному ведению горных работ и отсутствие квалифицированных специалистов горного профиля, включая специалистов-маркшейдеров.

В целях совершенствования контрольно-надзорной деятельности территориальных управлений необходимо проведение семинаров с инспекторским составом в части применения положений действующего законодательства о недрах и принятых в 2015 г. нормативных правовых актов в области государственного горного надзора.
2.2.9. Объекты нефтегазодобывающей промышленности

Федеральный государственный надзор в области промышленной безопасности осуществляется в отношении 7560 опасных производственных объектов нефтегазодобычи (далее — ОПО), в том числе:
388 ОПО I класса опасности;
939 ОПО II класса опасности;
4277 ОПО III класса опасности;
1956 ОПО IV класса опасности.

В 2015 г. на ОПО произошло 17 аварий, что на одну аварию меньше, чем в 2014 г.
Количество случаев смертельного травматизма в 2015 г. увеличилось на десять (53 %) по сравнению с аналогичным периодом 2014 г. (9 случаев).
В 2015 г. произошло 7 групповых несчастных случаев, что на 1 случай больше чем в 2014 г.
Общее количество пострадавших при групповых несчастных случаях составило 19 человек, что в 3 раза меньше чем в 2014 г. (55 чел.), при этом число погибших при групповых несчастных случаях не изменилось и составило 9 человек (в 2014 г. — 9 чел.).
Общее число пострадавших при несчастных смертельных случаях в нефтедобывающей промышленности в 2015 г. составило 19 человек (в 2014 г. — 9 чел.). Случаев смертельного травматизма на объектах газодобывающей промышленности не зарегистрировано.
Общий ущерб от произошедших аварий в 2015 г. составил 1 168 млн 698 тыс. руб., тогда как в 2014 г. общий ущерб составлял 1 434 млн 126 тыс. руб.

![Динамика аварийности и производственного травматизма](image)

Рис. 12. Динамика аварийности и производственного травматизма за 2010–2015 гг. на опасных производственных объектах нефтегазодобывающей промышленности

В 2015 г. снизилось количество аварий на опасных производственных объектах нефтедобывающей (−1), на объектах газодобычи количество аварий не изменилось (табл. 56).
Согласно проведенному анализу установлено, что из общего числа аварий, произошедших в 2015 г., 29% аварий связано с открытыми фонтанами и выбросами из нефтяных и газовых скважин, доля которых по сравнению с 2014 г. снизилась на 10% (табл. 57).

Таблица 56
Распределение аварий по отраслям промышленности

<table>
<thead>
<tr>
<th></th>
<th>2015 г.</th>
<th>2014 г.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Нефтяная добыча</td>
<td>16</td>
<td>17</td>
</tr>
<tr>
<td>Газодобыча</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Всего:</td>
<td>17</td>
<td>18</td>
</tr>
</tbody>
</table>

Число аварий по виду «взрыв и пожар» увеличилось по сравнению с 2014 г. на 3 случая и составило 29% от общего числа аварий.

Уменьшилось число прочих аварий, связанных с разрушением технических устройств, разливами нефтегазообразующей жидкости, доля которых от общего числа аварий составляет 35%, что на 9% меньше, чем за тот же период 2014 г.

Таблица 57
Распределение по видам аварий на объектах нефтегазодобычи

<table>
<thead>
<tr>
<th>Виды аварий</th>
<th>2015 г.</th>
<th>%</th>
<th>2014 г.</th>
<th>%</th>
<th>+ / –</th>
</tr>
</thead>
<tbody>
<tr>
<td>Открытые фонтаны и выбросы</td>
<td>5</td>
<td>29</td>
<td>6</td>
<td>39</td>
<td>–1</td>
</tr>
<tr>
<td>Взрывы и пожары на объектах</td>
<td>5</td>
<td>29</td>
<td>2</td>
<td>12</td>
<td>+3</td>
</tr>
<tr>
<td>Падение буровых (эксплуатационных) вышек, разрушение их частей</td>
<td>1</td>
<td>7</td>
<td>1</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Прочие (разрушение технических устройств, разливы нефтесодержащей жидкости)</td>
<td>6</td>
<td>35</td>
<td>9</td>
<td>44</td>
<td>–3</td>
</tr>
<tr>
<td>Всего:</td>
<td>17</td>
<td>100</td>
<td>18</td>
<td>100</td>
<td>–1</td>
</tr>
</tbody>
</table>

Таблица 58
Распределение смертельного травматизма по отраслям промышленности

<table>
<thead>
<tr>
<th></th>
<th>2015 г.</th>
<th>2014 г.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Нефтяная добыча</td>
<td>21</td>
<td>9</td>
</tr>
<tr>
<td>Газодобыча</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Всего:</td>
<td>21</td>
<td>9</td>
</tr>
</tbody>
</table>

Таблица 59
Распределение несчастных случаев со смертельным исходом на объектах нефтегазодобычи по травмирующим факторам

<table>
<thead>
<tr>
<th>Травмирующие факторы</th>
<th>2015 г.</th>
<th>2014 г.</th>
<th>+ / –</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Число смер-</td>
<td>%</td>
<td>Число смер-</td>
</tr>
<tr>
<td></td>
<td>тельных трав</td>
<td></td>
<td>тельных трав</td>
</tr>
<tr>
<td>Термическое воздействие</td>
<td>4</td>
<td>21</td>
<td>2</td>
</tr>
<tr>
<td>Падение с высоты</td>
<td>2</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>Токсичные вещества</td>
<td>2</td>
<td>11</td>
<td>0</td>
</tr>
</tbody>
</table>
Травмирующие факторы | 2015 г. | | 2014 г. | | +/– |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Число смертельных травм</td>
<td>%</td>
<td>Число смертельных травм</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>Недостаток кислорода</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>Взрывная волна</td>
<td>3</td>
<td>16</td>
<td>2</td>
<td>22</td>
<td>+1</td>
</tr>
<tr>
<td>Разрушенные технические устройства</td>
<td>7</td>
<td>36</td>
<td>4</td>
<td>44</td>
<td>+3</td>
</tr>
<tr>
<td>Поражение электрическим током</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Прочие</td>
<td>19</td>
<td>100</td>
<td>9</td>
<td>100</td>
<td>+10</td>
</tr>
</tbody>
</table>

Всего: 19 100 9 100 +10

Таблица 60
Распределение аварий и несчастных случаев со смертельным исходом
в 2014 и 2015 гг. по субъектам Российской Федерации

<table>
<thead>
<tr>
<th>Федеральные округа Российской Федерации (субъекты Российской Федерации)</th>
<th>Аварии</th>
<th>Несчастные случаи со смертельным исходом</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2014 г.</td>
<td>2015 г. +/–</td>
</tr>
<tr>
<td>Центральный федеральный округ (г. Москва)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Северо-Западный федеральный округ (г. Санкт-Петербург)</td>
<td>10</td>
<td>1 (+9)</td>
</tr>
<tr>
<td>Ненецкий АО</td>
<td></td>
<td>1 +1</td>
</tr>
<tr>
<td>Республика Коми</td>
<td>10</td>
<td>1 (+9)</td>
</tr>
<tr>
<td>Южный федеральный округ (г. Ростов-на-Дону)</td>
<td>0</td>
<td>3 (+3)</td>
</tr>
<tr>
<td>Волгоградская область</td>
<td>2</td>
<td>2 +2</td>
</tr>
<tr>
<td>Краснодарский край</td>
<td>0</td>
<td>1 +1</td>
</tr>
<tr>
<td>Северо-Кавказский федеральный округ (г. Пятигорск)</td>
<td>1</td>
<td>0 (-1)</td>
</tr>
<tr>
<td>Ставропольский край</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>Приволжский федеральный округ (г. Нижний Новгород)</td>
<td>4</td>
<td>5 (+1)</td>
</tr>
<tr>
<td>Оренбургская область</td>
<td>1</td>
<td>1 +1</td>
</tr>
<tr>
<td>Пермский край</td>
<td>1</td>
<td>3 (+2)</td>
</tr>
<tr>
<td>Республика Башкортостан</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>Республика Татарстан</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>Самарская область</td>
<td>1</td>
<td>+1</td>
</tr>
<tr>
<td>Уральский федеральный округ (г. Екатеринбург)</td>
<td>2</td>
<td>6 (+4)</td>
</tr>
<tr>
<td>Тюменская область</td>
<td>6</td>
<td>+6</td>
</tr>
<tr>
<td>Ханты-Мансийский АО</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>Ямало-Ненецкий АО</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>Сибирский федеральный округ (г. Новосибирск)</td>
<td>1</td>
<td>1 (+0)</td>
</tr>
<tr>
<td>Иркутская область</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>Новосибирская область</td>
<td>1</td>
<td>+1</td>
</tr>
<tr>
<td>Федеральные округа Российской Федерации (субъекты Российской Федерации)</td>
<td>Аварии</td>
<td>Несчастные случаи со смертельным исходом</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>2014 г.</td>
<td>2015 г.</td>
<td>+/–</td>
</tr>
<tr>
<td>Дальневосточный федеральный округ (г. Хабаровск)</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Сахалинская область</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Итого по России:</td>
<td>18</td>
<td>17</td>
</tr>
</tbody>
</table>

Таблица 61

Распределение аварий и несчастных случаев со смертельным исходом в 2014 и 2015 гг. по территориальным органам Ростехнадзора

<table>
<thead>
<tr>
<th>Федеральные округа Российской Федерации (территориальные органы Ростехнадзора)</th>
<th>Аварии</th>
<th>Несчастные случаи со смертельным исходом</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014 г.</td>
<td>2015 г.</td>
<td>+/–</td>
</tr>
<tr>
<td>Центральный федеральный округ (г. Москва)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Северо-Западный федеральный округ (г. Санкт-Петербург)</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>Печорское управление</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>Южный федеральный округ (г. Ростов-на-Дону)</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Северо-Кавказское управление</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Нижне-Волжское управление</td>
<td>2</td>
<td>+2</td>
</tr>
<tr>
<td>Северо-Кавказкий федеральный округ (г. Пятигорск)</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Кавказское управление</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Приволжский федеральный округ (г. Нижний Новгород)</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Западно-Уральское управление</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Приволжское управление</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Средне-Поволжское управление</td>
<td>1</td>
<td>+1</td>
</tr>
<tr>
<td>Уральский федеральный округ (г. Екатеринбург)</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>Северо-Уральское управление</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>Сибирский федеральный округ (г. Новосибирск)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Сибирское управление</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Енисейское управление</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Дальневосточный федеральный округ (г. Хабаровск)</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Сахалинское управление</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Итого по России:</td>
<td>18</td>
<td>17</td>
</tr>
</tbody>
</table>
Аварии были допущены на опасных производственных объектах, поднадзорных Западно-Уральскому (4), Нижне-Волжскому (2), Печорскому (1), Сахалинскому (1), Северо-Кавказскому (1), Северо-Уральскому (6), Сибирскому (1), Средне-Поволжскому (1) управлением Ростехнадзора.

Увеличение числа аварий по сравнению с 2014 г. отмечено в Западно-Уральском (+1), Нижне-Волжском (+2), Сахалинском (+1), Северо-Кавказском (2), Печорском (6), Приволжском (1), Сахалинском (2), Северо-Уральском (4), Средне-Поволжском (1) управлением Ростехнадзора.

Несчастные случаи со смертельным исходом произошли на опасных производственных объектах, поднадзорных Западно-Уральскому (3), Нижне-Волжскому (2), Печорскому (6), Приволжскому (1), Сахалинскому (2), Северо-Уральскому (4), Средне-Поволжскому (1) управлением Ростехнадзора.

Аварии, причиной которых явились внутренние опасные факторы, связанные с отказом и разгерметизацией технических устройств, нарушением технологии производства работ.

В 4 случаях (31 %) причинами явились ошибки персонала, связанные с нарушением требований организации и производства опасных работ.

Наиболее крупная по последствиям авария произошла 14 мая 2015 г. в ООО «Газпром добыча Ямбург». В результате разрушения тройника 530×15, расположенного на узле приема очистного устройства, на ПК 153+40 газопровода-коллектора УКПГ-2В — УКПГ-1В, входящего в состав опасного производственного объекта «Система межпромысловых трубопроводов Ямбургского нефтегазоконденсатного месторождения», произошел выброс газожидкостной смеси.

В результате расследования причин аварии комиссией установлено, что причинами, приведшими к аварии, стал заводской дефект тройника 530×15.

Экономический ущерб от аварии составил 146,9 млн руб.

Аварии, причиной которых явились ошибки персонала, связанные с нарушением требований организации и производства опасных работ, произошли в ОАО «РИТЭК», ООО «ЛУКОЙЛ-ПЕРМЬ», ЗАО «Сибирская Сервисная Компания», ООО «НСХ АЗИЯ ДРИЛЛИНГ».

Из них наиболее крупная произошла 18 августа 2015 г. в ООО «НСХ АЗИЯ ДРИЛЛИНГ». На скважине № 502 Жилинского месторождения ООО «ЛУКОЙЛ-ПЕРМЬ» при проведении работ по освоению скважины (осуществлении технологической операции по подъему колонны насосно-компрессорных труб из скважины) началось газоводопроявление с последующим выбросом опасных веществ и открытым фонтанизированием.

Активное газонефтеводопроявление скважины из трубного и межтрубного пространства произошло при проведении вахтовым персоналом работ по герметизации труб и установке запорной компоновки с шаровым краном на колонну НКТ-89, который не был закрыт полностью. При закрытии трубных плашек превентора ПП2-2ФТ-152х21 одна плашка выдвинулась полностью, вторая плашка не вышла в
положение закрытия. Скважина перешла в режим открытого фонтанирования газонефтяной смесью. Вахта была эвакуирована в безопасную зону.

Дальнейшими действиями по ликвидации открытого фонтана руководил штаб ликвидации аварии с привлечением сил Пермского и Ижевского военизированных противофонтанных отрядов, а также подрядных организаций.

В ходе ликвидации открытого фонтана применялись технологии закачки в затрубное пространство технологической воды повышенной плотности (1,17 г/см³), раствора CaCl

(1,32 г/см³); утяжеленного бурового раствора (1,28 г/см³); закачки в затрубное пространство алюминиевых и полимерных шаров (диаметром 20–40 мм) с целью уменьшения проходного сечения в неисправном превенторе; применения специально разработанного и изготовленного технического устройства, позволяющего довести вторую плашку превентора до тела патрубка НКТ-73.

Открытый фонтан был ликвидирован 23 августа 2015 г.

Технической причиной аварии явилась неуравновешенность пластового давления и гидростатическим давлением столба жидкости, а также применение неисправного противовыбросового оборудования (ПВО).

Организационной причиной явилось отсутствие контроля признаков нефтегазоводопроявлений, уровня бурового раствора в скважине и отсутствие должного производственного контроля со стороны заказчика ООО «ЛУКОЙЛ-ПЕРМЬ» и генерального подрядчика ООО «НСХ АЗИЯ ДРИЛЛИНГ».

Общий ущерб от аварии составил 95,5 млн руб.

Информация об авариях, происшедших на опасных производственных объектах в 2015 г., размещена на официальном сайте Ростехнадзора в подразделе «Уроки, извлеченные из аварий» раздела «Надзор за объектами нефтегазового комплекса».

Сведения о выполнении мероприятий, предложенных комиссией по техническому расследованию причин аварий, после окончания сроков выполнения каждого пункта мероприятий, представляются руководителем территориального органа Ростехнадзора, на территории которого произошло происшествие, в центральный аппарат Ростехнадзора.

Территориальными органами Ростехнадзора в 2015 г. были проведены 2393 (в 2014 г. — 2372) проверки соблюдения требований промышленной безопасности при эксплуатации опасных производственных объектов нефтегазодобычи.

В результате проведенных проверок выявлено 11 784 нарушения требований промышленной безопасности (в 2014 г. — 132 12).

Количество административных наказаний, наложенных по итогам проверок, составило 1126 (в 2014 г. — 1152).

Общая сумма административных штрафов составила 74 438,8 тыс. руб. (в 2014 г. — 72 923,8 тыс. руб.), в том числе наложенных на юридических лиц — 54 929 тыс. руб., на должностных лиц — 18 443,6 тыс. руб., на граждан — 556,2 тыс. руб.

Административная приостановка деятельности осуществлялась 10 раз. Временный запрет деятельности применялся в одном случае.

Количество заявлений (материалов) на право осуществления юридическими лицами и индивидуальными предпринимателями деятельности по эксплуатации опасных производственных объектов, представленных в территориальные органы Ростехнадзора в 2015 г., составило 386. По результатам рассмотрения заявительных документов выдано 20 лицензий, переоформлено 108 лицензий, отказано в предо-
ставлении и переоформлении лицензии в 257 случаях. В одном случае аннулирована лицензия по решению суда.

В ходе проведения внеплановых выездных проверок соответствия заявителя лицензионным требованиям и условиям территориальными органами Ростехнадзора в 2015 г. выявлено 281 нарушение лицензионных требований, основными из которых явились:

эксплуатация технических устройств, применяемых на опасном производственном объекте, с истекшим сроком службы;
отсутствие приборов и систем контроля, управления, сигнализации оповещения и противоаварийной автоматической защиты технологических процессов;
непредставление эксплуатирующими организациями в регистрирующий орган декларации промышленной безопасности для ее внесения в реестр деклараций промышленной безопасности;
отсутствие разработанного плана мероприятий по локализации и ликвидации последствий аварий на опасных производственных объектах и его реализация.

Из 963 организаций, эксплуатирующих опасные производственные объекты, в 390 организациях созданы службы производственного контроля, в 573 организациях назначены ответственные лица за осуществление производственного контроля.

В организациях, эксплуатирующих опасные производственные объекты I и II классов опасности, созданы системы управления промышленной безопасностью и обеспечиваются условия их функционирования.

В 2015 г. службами производственного контроля и ответственными за осуществление производственного контроля организаций разработано 21 049 мероприятий (в 2014 г. — 20 362), направленных на обеспечение промышленной безопасности опасных производственных объектов.

Наиболее характерными нарушениями в части организации и осуществления производственного контроля являются:
надежде сроков проведения проверок;
отсутствие контроля за своевременным устранением выявленных нарушений;
отсутствие контроля за своевременным проведением экспертизы промышленной безопасности технических устройств, зданий, сооружений.

Обязательное страхование гражданской ответственности за причинение вреда в результате аварии или инцидента на опасном производственном объекте осуществляется организациями, эксплуатирующими опасные производственные объекты, в соответствии с законодательством Российской Федерации об обязательном страховании гражданской ответственности владельца опасного объекта за причинение вреда в результате аварии на опасном объекте.

Всеми 963 организациями, эксплуатирующими опасные производственные объекты, заключены договоры страхования гражданской ответственности за причинение вреда в результате аварии или инцидента на опасном производственном объекте.

Повышение промышленной безопасности на опасных производственных объектах достигается эксплуатирующими организациями при реализации планов модернизации, включающих работы по реконструкции действующих и строительству новых объектов нефтегазодобычи. Так, на Иреляхском нефтегазовом месторождении (НГМ) ведется строительство пункта приема-сдачи для транспортирования нефти по трубопроводной системе «Восточная Сибирь — Тихий океан» (ВСТО).
На Чаяндинском месторождении ведется строительство объектов обустройства месторождения. Ввод месторождения в разработку планируется в 2018 г. с вводом в эксплуатацию магистрального газопровода «Сила Сибири».

В соответствии с комплексным планом развития производства сжиженного природного газа на полуострове Ямал осуществляется строительство комплекса по добыче, подготовке, сжиганию газа, отгрузке СПГ и газового конденсата Южно-Тамбейского газоконденсатного месторождения (ГКМ) в условиях Арктики.

Для предотвращения отказов оборудования и в целях их дальнейшей безопасной эксплуатации организациями проводятся работы по диагностированию и определению остаточного ресурса современными методами неразрушающего контроля.

Оборудование с истекшим сроком эксплуатации проходит в установленном порядке экспертизу промышленной безопасности.

В 2015 г. центральным аппаратом Ростехнадзора разработаны и утверждены приказами Ростехнадзора от 16 сентября 2015 г. № 364 и от 17 августа 2015 г. № 317 Руководство по безопасности «Методика анализа риска аварий на опасных производственных объектах морского нефтегазового комплекса» и Руководство по безопасности «Методика анализа риска аварий на опасных производственных объектах нефтегазодобычи».

В 2015 г. Ростехнадзором рассмотрены 2774 плана развития горных работ (далее — ПРГР) на 2016 г., которые разрабатывают 373 недропользователя месторождений углеводородного сырья. При рассмотрении ПРГР согласовано на 2016 г. — 2031 (73 %), отказано в согласовании ПРГР — 245 (9 %).

2.2.10. Объекты нефтехимической и нефтегазоперерабатывающей промышленности и объекты нефтепродуктообеспечения

В 2015 г. федеральный государственный надзор в области промышленной безопасности осуществлялся в отношении 4904 опасных производственных объектов нефтехимических, нефтегазоперерабатывающих производств и объектов нефтепродуктообеспечения (далее — опасные производственные объекты), в том числе:

- 389 ОПО I класса опасности;
- 418 ОПО II класса опасности;
- 3887 ОПО III класса опасности;
- 213 ОПО IV класса опасности.

Общий ущерб от произошедших аварий в 2015 г. составил 133,2 млн руб., тогда как за 2014 г. общий ущерб составил 2 018 млн руб.

Количество групповых несчастных случаев в 2015 г. составило 5 случаев, что на один случай меньше, чем в 2014 г., но при этом общее количество травмированных по сравнению с аналогичным периодом 2014 г. снизилось с 55 до 14 человек, а смертельно травмированных — с 8 до 4 человек.
В 2015 г. возросло количество аварий на опасных производственных объектах нефтехимических производств (+5), снизилось количество аварий на опасных производственных объектах нефтегазоперерабатывающих производств (−5), на объектах нефтепродуктообеспечения показатель аварийности увеличился на один случай (+1) (табл. 62).

Таблица 62

<table>
<thead>
<tr>
<th>Отрасли промышленности</th>
<th>2015 г.</th>
<th>2014 г.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Нефтегазоперерабатывающие производства</td>
<td>7</td>
<td>13</td>
</tr>
<tr>
<td>Нефтехимические производства</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>Объекты нефтепродуктообеспечения</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Всего:</td>
<td>19</td>
<td>19</td>
</tr>
</tbody>
</table>

В 2015 г. на 67 % снизился показатель смертельного травматизма на опасных производственных объектах нефтегазоперерабатывающих производств, 2 случая смертельного травматизма зарегистрировано на объектах нефтехимических производств, количество смертельно травмированных на объектах нефтепродуктообеспечения не изменилось и составило 2 случая (табл. 63).

Таблица 63

<table>
<thead>
<tr>
<th>Отрасли промышленности</th>
<th>2015 г.</th>
<th>2014 г.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Нефтегазоперерабатывающие производства</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>Нефтехимические производства</td>
<td>2</td>
<td>—</td>
</tr>
<tr>
<td>Объекты нефтепродуктообеспечения</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Всего:</td>
<td>7</td>
<td>11</td>
</tr>
</tbody>
</table>

Рис. 13. Динамика аварийности и производственного травматизма за 2010–2015 гг. на опасных производственных объектах нефтегазоперерабатывающей, нефтехимической промышленности и объектах нефтепродуктообеспечения
Согласно проведенному анализу из общего количества аварий за 2015 г. 58 % (11 аварий) связано с пожаром, доля которых по сравнению с тем же периодом 2014 г. возросла на 16 %. Уменьшилось количество аварий, связанных с выбросом опасных веществ, доля которых уменьшилась на 22 %. Количество аварий по виду «взрыв» увеличилось на одну, а в процентном отношении увеличилось на 6 % (табл. 64).

Таблица 64

<table>
<thead>
<tr>
<th>Виды аварий</th>
<th>Число аварий</th>
<th>2015 г.</th>
<th>2014 г.</th>
<th>+/–</th>
<th>%</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Взрыв</td>
<td>6</td>
<td>32</td>
<td>5</td>
<td>26</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Пожар</td>
<td>11</td>
<td>58</td>
<td>8</td>
<td>42</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Выброс опасных веществ</td>
<td>2</td>
<td>10</td>
<td>6</td>
<td>32</td>
<td>–4</td>
<td></td>
</tr>
<tr>
<td>Всего:</td>
<td>19</td>
<td>100</td>
<td>19</td>
<td>100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Травмирующим фактором несчастных случаев со смертельным исходом в 2015 г. явилось термическое воздействие (табл. 65).

Таблица 65

<table>
<thead>
<tr>
<th>Травмирующие факторы</th>
<th>Число несчастных случаев со смертельным исходом</th>
<th>2015 г.</th>
<th>2014 г.</th>
<th>+/–</th>
<th>%</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Термическое воздействие</td>
<td>7</td>
<td>100</td>
<td>11</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Высота</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Токсичные вещества</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Недостаток кислорода</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Взрывная волна</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Разрушенные технические устройства</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Поражение электрическим током</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Прочие</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Всего:</td>
<td>7</td>
<td>100</td>
<td>11</td>
<td>100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Аварии были допущены на опасных производственных объектах, поднадзорных Приволжскому (3), Дальневосточному (2), Западно-Уральскому (2), Средне-Поволжскому (2), Уральскому (2), Межрегиональному технологическому (1), Енисейскому (1), Кавказскому (1), Нижне-Волжскому (1), Приокскому (1), Северо-Западному (1), Сибирскому (1) управлением Ростехнадзора (табл. 66).

Несчастные случаи со смертельным исходом зафиксированы на опасных производственных объектах, поднадзорных Средне-Поволжскому (3), Енисейскому (1), Западно-Уральскому (1), Приокскому (1) и Уральскому (1) управлениям Ростехнадзора (табл. 67).
Таблица 66
Распределение аварий и несчастных случаев со смертельным исходом в 2014 и 2015 гг. по субъектам Российской Федерации

<table>
<thead>
<tr>
<th>Федеральные округа Российской Федерации (по субъектам Российской Федерации)</th>
<th>Аварии 2014 г.</th>
<th>Аварии 2015 г.</th>
<th>+/–</th>
<th>Несчастные случаи со смертельным исходом 2014 г.</th>
<th>Несчастные случаи со смертельным исходом 2015 г.</th>
<th>+/–</th>
</tr>
</thead>
<tbody>
<tr>
<td>Центральный федеральный округ (г. Москва)</td>
<td>1</td>
<td>2</td>
<td>+1</td>
<td>1</td>
<td>+1</td>
<td></td>
</tr>
<tr>
<td>Москва город</td>
<td>1</td>
<td></td>
<td>+1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Рязанская область</td>
<td>1</td>
<td></td>
<td>–1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Тульская область</td>
<td>1</td>
<td></td>
<td>+1</td>
<td>1</td>
<td></td>
<td>+1</td>
</tr>
<tr>
<td>Северо-Западный федеральный округ (г. Санкт-Петербург)</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td>–1</td>
</tr>
<tr>
<td>Мурманская область</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td>–1</td>
</tr>
<tr>
<td>Северо-Кавказский федеральный округ (г. Пятигорск)</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Республика Дагестан</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ставропольский край</td>
<td>1</td>
<td></td>
<td>–1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Южный федеральный округ</td>
<td>2</td>
<td>1</td>
<td>–1</td>
<td>1</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Волгоградская область</td>
<td>1</td>
<td></td>
<td>+1</td>
<td>1</td>
<td></td>
<td>–1</td>
</tr>
<tr>
<td>Краснодарский край</td>
<td>1</td>
<td></td>
<td>–1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ростовская область</td>
<td>1</td>
<td></td>
<td>+1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Приволжский федеральный округ (г. Нижний Новгород)</td>
<td>9</td>
<td>8</td>
<td>–1</td>
<td>4</td>
<td></td>
<td>+4</td>
</tr>
<tr>
<td>Нижегородская область</td>
<td>1</td>
<td></td>
<td>–1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Республика Башкортостан</td>
<td>1</td>
<td>3</td>
<td></td>
<td>1</td>
<td></td>
<td>+1</td>
</tr>
<tr>
<td>Республика Татарстан</td>
<td>1</td>
<td>3</td>
<td></td>
<td>2</td>
<td></td>
<td>+2</td>
</tr>
<tr>
<td>Самарская область</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>+3</td>
</tr>
<tr>
<td>Саратовская область</td>
<td>1</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Сибирский федеральный округ (г. Новосибирск)</td>
<td>3</td>
<td>2</td>
<td>–1</td>
<td>8</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Алтайский край</td>
<td>1</td>
<td></td>
<td>–1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Иркутская область</td>
<td>1</td>
<td></td>
<td>+1</td>
<td>1</td>
<td></td>
<td>+1</td>
</tr>
<tr>
<td>Красноярский край</td>
<td>1</td>
<td></td>
<td>–1</td>
<td>8</td>
<td></td>
<td>–8</td>
</tr>
<tr>
<td>Омская область</td>
<td>1</td>
<td>1</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Уральский федеральный округ</td>
<td>2</td>
<td>2</td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Свердловская область</td>
<td>1</td>
<td></td>
<td>+1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Челябинская область</td>
<td>1</td>
<td></td>
<td>+1</td>
<td>1</td>
<td></td>
<td>+1</td>
</tr>
<tr>
<td>Дальневосточный федеральный округ (г. Хабаровск)</td>
<td>2</td>
<td>2</td>
<td></td>
<td>1</td>
<td></td>
<td>–1</td>
</tr>
<tr>
<td>Хабаровский край</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Чукотский АО</td>
<td>1</td>
<td></td>
<td>–1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Итого по России:</td>
<td>19</td>
<td>19</td>
<td>0</td>
<td>11</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>(+) рост/(–) снижение:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Распределение аварий и несчастных случаев со смертельным исходом
в 2014 и 2015 гг. по территориальным органам Ростехнадзора

<table>
<thead>
<tr>
<th>Федеральные округа Российской Федерации (территориальные органы Ростехнадзора)</th>
<th>Аварии</th>
<th>Несчастные случаи со смертельным исходом</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2014 г.</td>
<td>2015 г.</td>
</tr>
<tr>
<td>Центральный федеральный округ (г. Москва)</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Межрегиональное технологическое управление</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>г. Москва</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Чукотский АО</td>
<td></td>
<td></td>
</tr>
<tr>
<td>г. Норильск</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Приокское управление</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Тульская область</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Орловская область</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Калужская область</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Рязанская область</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Брянская область</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Северо-Западный федеральный округ (г. Санкт-Петербург)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Северо-Западное управление</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>г. Санкт-Петербург</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Ленинградская область</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Псковская область</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Новгородская область</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Мурманская область</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Республика Карелия</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Вологодская область</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Архангельская область</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Южный федеральный округ (г. Ростов-на-Дону)</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Нижне-Волжское управление</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Волгоградская область</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Астраханская область</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Республика Калмыкия</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Саратовская область</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Пензенская область</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Северо-Кавказское управление</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Ростовская область</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Краснодарский край</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Северо-Кавказский федеральный округ (г. Пятигорск)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Федеральные округа Российской Федерации (территориальные органы Ростехнадзора)</td>
<td>Аварии</td>
<td>Несчастные случаи со смертельным исходом</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>2014 г.</td>
<td>2015 г.</td>
<td>+/–</td>
</tr>
<tr>
<td>Кавказское управление</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ставропольский край</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Кабардино-Балкарская Республика</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Карачаево-Черкесская Республика</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Республика Дагестан</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Республика Северная Осетия — Алания</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Чеченская Республика</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Республика Ингушетия</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Приволжский федеральный округ (г. Нижний Новгород)</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>Западно-Уральское управление</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Пермский край</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Удмуртская Республика</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Кировская область</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Республика Башкортостан</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Оренбургская область</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Приволжское управление</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Республика Татарстан</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Республика Марий Эл</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Чувашская Республика</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Средне-Поволжское управление</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Самарская область</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ульяновская область</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Волжско-Окское управление</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Нижегородская область</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Республика Мордовия</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Сибирский федеральный округ (г. Новосибирск)</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Сибирское управление</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Кемеровская область</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Алтайский край</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Новосибирская область</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Омская область</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Томская область</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Енисейское управление</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Красноярский край (без г. Норильска и прилегающих к нему территорий)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Республика Тыва</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Республика Хакасия</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Иркутская область</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Федеральные округа Российской Федерации (территориальные органы Ростехнадзора)

<table>
<thead>
<tr>
<th>Федеральный округ</th>
<th>Аварии</th>
<th>Несчастные случаи со смертельным исходом</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2014 г.</td>
<td>2015 г.</td>
</tr>
<tr>
<td>Уральский федеральный округ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Уральское управление</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Свердловская область</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Челябинская область</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Курганская область</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Дальневосточный федеральный округ (г. Хабаровск)</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Дальневосточное управление</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Хабаровский край</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Приморский край</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Амурская область</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Еврейская АО</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Камчатский край</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Итого по России:</td>
<td>19</td>
<td>19</td>
</tr>
</tbody>
</table>

Анализ результатов технических расследований аварий показывает, что основными причинами возникновения аварий в 2015 г. явились:

- в 12 случаях (63 %) внутренние опасные факторы, связанные с разгерметизацией и разрушением технических устройств, нарушением технологии ведения процесса, а также отсутствием проектных решений по организации безопасного освобождения трубопровода;
- в 7 случаях (37 %) ошибки персонала, связанные с нарушением требований организации и производства опасных видов работ, организации работ по обслуживанию оборудования.

Комиссией по техническому расследованию аварии установлено, что разгерметизация тройника смешения гидрогенизата технологического трубопровода произошла в результате локального утонения стенки в зоне коррозионных процессов в агрессивной среде при нарушении параметров эксплуатации технологического трубопровода.

Экономический ущерб от аварии составил 32 млн руб.

Наиболее тяжелая по последствиям авария произошла 10 апреля 2015 г. в ОАО «Ангарская нефтехимическая компания». На установке компримирования и сжигания факельных газов, находящейся в плановом капитальном ремонте, произошел пожар, в результате которого получили ожоги различной степени тяжести 5 человек из числа подрядной организации и персонала установки, из них смертельную травму получил начальник установки.

Комиссией по техническому расследованию аварии установлено, что причиной возгорания и развития пожара явилось истечение газового конденсата в месте проведения ремонтных работ, что стало возможным вследствие несогласованных действий персонала и ответственных за проведение подготовительных работ по пропарке трубопровода. В месте демонтажа диафрагмы и снятия специальной заглушки трубопровода произошло истечение газового конденсата, который воспламенился от падающих сверху искр, где проводились подрядной организацией огневые работы.

Экономический ущерб от аварии составил 1 359,5 тыс. руб.

Информация об авариях, произошедших на опасных производственных объектах в 2015 г., размещена на официальном сайте Ростехнадзора в подразделе «Уроки, извлеченные из аварий» раздела «Надзор за объектами нефтегазового комплекса».

Сведения о выполнении мероприятий, предложенных комиссией по техническому расследованию причин аварий, после окончания сроков выполнения каждого пункта мероприятий представляются руководителем территориального органа Ростехнадзора, на территории которого произошло происшествие, в центральный аппарат Ростехнадзора.

Территориальными органами Ростехнадзора в 2015 г. в отношении юридических лиц, индивидуальных предпринимателей проведено 4352 проверки (в 2014 г. — 3860) соблюдения требований промышленной безопасности при эксплуатации опасных производственных объектов, в том числе проведенных в рамках режима постоянного государственного надзора — 1017 (в 2014 г. — 968).

В результате проведенных проверок выявлено 22 503 нарушения требований промышленной безопасности (в 2014 г. — 20 385).

Общее количество административных наказаний, наложенных по итогам проверок, составило 1961 (в 2014 г. — 1759).

Территориальными органами Ростехнадзора при проверках поднадзорных предприятий анализируется соблюдение законодательно установленных процедур регу-
лирования промышленной безопасности, влияющих на устойчивость и безопасную эксплуатацию опасных производственных объектов.

Важным направлением по контролю за промышленной безопасностью опасных производственных объектов является проверка создания системы управления промышленной безопасностью и организации производственного контроля за соблюдением требований промышленной безопасности.

В организациях, эксплуатирующих опасные производственные объекты I и II классов опасности, созданы системы управления промышленной безопасностью и обеспечиваются условия их функционирования.

В рамках создания системы управления промышленной безопасностью в организациях разработаны и внедрены стандарты организации системы управления промышленной безопасностью и охраной труда.

Из 3003 организаций, эксплуатирующих опасные производственные объекты, в 476 организациях созданы службы производственного контроля, в 2527 организациях назначены ответственные лица за осуществление производственного контроля.

Службами производственного контроля организаций разработано 22 984 мероприятия, направленные на обеспечение промышленной безопасности опасных производственных объектов.

За 12 месяцев 2015 г. из запланированных к проведению 15 750 контрольных проверок службами производственного контроля фактически проведено 15 566 проверок (что составляет 98,8 % от плана).

Наиболее характерными нарушениями в части организации и осуществления производственного контроля являются:

- нарушение сроков проведения проверок или формальность их проведения;
- отсутствие контроля за своевременным устранением выявленных нарушений;
- отсутствие контроля за своевременным проведением экспертизы промышленной безопасности технических устройств, зданий, сооружений.

В то же время в целях повышения эффективности производственного контроля на крупных предприятиях компании ЛУКОЙЛ, таких, как ООО «ЛУКОЙЛ-Нижегороднефтехимсинтез», внедряется система информационного обеспечения, позволяющая производить электронный обмен информацией со службами производственного контроля и дистанционный контроль их работы территориальными органами Ростехнадзора.

Одним из обязательных требований промышленной безопасности к эксплуатации опасного производственного объекта является наличие лицензии на осуществление вида деятельности в области промышленной безопасности.

За 12 месяцев 2015 г. территориальными органами было рассмотрено 356 заявлений (материалов) на право осуществления юридическими лицами и индивидуальными предпринимателями деятельности в области промышленной безопасности опасных производственных объектов. По результатам рассмотрения заявителей документов выдано 67 лицензий, переоформлено 289 лицензий, отказано в предоставлении лицензии в 58 случаях.

Основными характерными нарушениями, выявленными при проверках соискателя лицензии, явились: неукомплектованность штата опасного производственно-го объекта квалифицированными рабочими; отсутствие положительных заключений экспертизы промышленной безопасности при отсутствии актов ввода объекта в эксплуатацию, отсутствие приборов и систем контроля, управления, сигнализа-
ции оповещения и противоаварийной автоматической защиты технологических процессов.

Обязательное страхование гражданской ответственности за причинение вреда в результате аварии или инцидента на опасном производственном объекте осуществляется организациями, эксплуатирующими опасные производственные объекты, в соответствии с законодательством Российской Федерации об обязательном страховании гражданской ответственности владельца опасного объекта за причинение вреда в результате аварии на опасном объекте. Всеми 3003 организациями, эксплуатирующими опасные производственные объекты, заключены договоры страхования гражданской ответственности за причинение вреда в результате аварии или инцидента на опасном производственном объекте.

Повышение промышленной безопасности на опасных производственных объектах достигается эксплуатирующими организациями при реализации планов модернизации, включающих работы по реконструкции действующих и строительству новых установок.

Так, в начале октября 2015 г. введена в промышленную эксплуатацию установка каталитического крекинга вакуумного газойля в ООО «ЛУКОЙЛ-Нижегороднефтеоргсинтез». В состав комплекса каталитического крекинга входят установки алкилирования и гидроочистки бензина каталитического крекинга.

В декабре 2015 г. в ООО «Пермнефтеоргсинтез» построена и введена в эксплуатацию установка замедленного коксования.

Проведенные работы по реконструкции действующих и строительству новых установок оказали влияние на повышение уровня промышленной безопасности поднадзорных производств.

В 2015 г. осуществлялись работы по разработке и изменению нормативных правовых актов в целях применения передовых технических норм, соответствующих международным стандартам, а также уточнению и исключению отдельных положений нормативных актов для снижения административных барьеров для бизнеса.

С этой целью были разработаны:

проект приказа Ростехнадзора «Об утверждении Федеральных норм и правил в области промышленной безопасности «Правила безопасности нефтегазоперерабатывающих производств»;

проект приказа Ростехнадзора «О внесении изменений в Федеральные нормы и правила в области промышленной безопасности «Общие правила взрывобезопасности для взрывопожароопасных химических, нефтехимических и нефтеперерабатывающих производств», утвержденные приказом Ростехнадзора от 11 марта 2013 г. № 96».

Оба проекта нормативных правовых актов направлены в Минюст на государственную регистрацию.
2.2.11. Объекты магистрального трубопроводного транспорта и подземного хранения газа

В 2015 г. федеральный государственный надзор в области промышленной без-опасности осуществлялся в отношении 4479 ОПО магистрального трубопроводно-го транспорта, из них:

688 ОПО I класса опасности;
3056 ОПО II класса опасности;
633 ОПО III класса опасности;
102 ОПО IV класса опасности.

Общая протяженность линейной части магистральных трубопроводов составляет более 257,8 тыс. км, из которых:

магистральные газопроводы — 180,2 тыс. км;
магистральные нефтепроводы — 55,3 тыс. км;
магистральные продуктоперепонводы — 22,2 тыс. км, в том числе:
amмиакопроводы — 1,4 тыс. км;
tрубопроводы ШФЛУ — 4,3 тыс. км.

В 2015 г. на опасных производственных объектах магистрального трубопроводно-го транспорта произошло 13 аварий.

В сравнении с 2014 г. на объектах магистрального трубопроводного транспорта количество аварий увеличилось на 5 случаев.

В 2015 г. количество аварий на ОПО магистрального трубопроводного транспор-та возросло на 61,5 %, из них на газопроводах — на 2 случая, на нефтепроводах — на 1 случай, на нефтепродуктоперепонводах — на 1 случай, на аммиакопроводах — на 1 случай (табл. 68).

<table>
<thead>
<tr>
<th>Отрасли промышленности</th>
<th>2015 г.</th>
<th>2014 г.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Газопроводы</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>Нефтепроводы</td>
<td>1</td>
<td>—</td>
</tr>
<tr>
<td>Нефтепродуктоперепонводы</td>
<td>1</td>
<td>—</td>
</tr>
<tr>
<td>Аммиакопроводы</td>
<td>1</td>
<td>—</td>
</tr>
<tr>
<td>ПХГ</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Всего:</td>
<td>13</td>
<td>8</td>
</tr>
</tbody>
</table>

Таблица 68
В 2015 г. на ОПО магистрального трубопроводного транспорта произошло 2 случая смертельного травматизма.
В сравнении с 2014 г. на ОПО магистрального трубопроводного транспорта количество случаев смертельного травматизма не увеличилось (табл. 69).

Таблица 69

Распределение смертельного травматизма по отраслям промышленности

<table>
<thead>
<tr>
<th>Отрасли промышленности</th>
<th>2015 г.</th>
<th>2014 г.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Газопроводы</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Нефтепроводы</td>
<td>1</td>
<td>—</td>
</tr>
<tr>
<td>Нефтепродуктопроводы</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Аммиакопроводы</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>ПХГ</td>
<td>—</td>
<td>1</td>
</tr>
<tr>
<td>Всего:</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Согласно проведенному анализу из общего количества аварий за 12 месяцев 2015 г. 69,2 % (9 аварий) связано с механическим и коррозионным повреждением газопроводов, доля которых по сравнению с тем же периодом 2014 г. увеличилась на 33 %. В сравнении с прошлым годом увеличилось на 100 % (2 аварии) количество аварий, связанных с механическим повреждением газопровода вследствие нарушений при выполнении земляных работ в охранной зоне механизированным способом (рис. 14 и табл. 70).

Рис. 14. Динамика аварийности и производственного травматизма за 2010–2015 гг. на опасных производственных объектах магистрального трубопроводного транспорта

Таблица 70

Распределение аварий по видам аварий на опасных производственных объектах магистрального трубопроводного транспорта

<table>
<thead>
<tr>
<th>Аварии магистрального трубопроводного транспорта</th>
<th>2014 г.</th>
<th>2015 г.</th>
<th>+/–</th>
</tr>
</thead>
<tbody>
<tr>
<td>Газопроводы</td>
<td>8</td>
<td>10</td>
<td>+2</td>
</tr>
<tr>
<td>Конструктивные недостатки</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Брак строительства/изготовления</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Коррозия металла трубы (КРН)</td>
<td>6</td>
<td>8</td>
<td>+2</td>
</tr>
</tbody>
</table>
Травмирующими факторами 2 несчастных случаев со смертельным исходом в 2015 г. явились: в первом случае — разрушение герметизатора, во втором случае — опрокидывание экскаватора (табл. 71).

Таблица 71

Распределение несчастных случаев со смертельным исходом по травмирующим факторам

<table>
<thead>
<tr>
<th>Травмирующие факторы</th>
<th>Число несчастных случаев со смертельным исходом</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2014 г.</td>
</tr>
<tr>
<td></td>
<td>%</td>
</tr>
<tr>
<td>Термическое воздействие</td>
<td>—</td>
</tr>
<tr>
<td>Высота</td>
<td>—</td>
</tr>
<tr>
<td>Токсичные вещества</td>
<td>—</td>
</tr>
<tr>
<td>Недостаток кислорода</td>
<td>—</td>
</tr>
<tr>
<td>Взрывная волна</td>
<td>1</td>
</tr>
<tr>
<td>Разрушенные технические устройства</td>
<td>1</td>
</tr>
<tr>
<td>Поражение электрическим током</td>
<td>—</td>
</tr>
<tr>
<td>Прочие</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

Всего: 2 13 +5
Наибольшее количество аварий и несчастных случаев со смертельным исходом произошло в Уральском федеральном округе (6 аварий и 2 смертельных случая). В Центральном и Приволжском федеральных округах произошло по 3 аварии (табл. 72).

Таблица 72

Распределение аварий и несчастных случаев со смертельным исходом в 2014 и 2015 гг. по субъектам Российской Федерации

<table>
<thead>
<tr>
<th>Федеральные округа Российской Федерации (субъекты Российской Федерации)</th>
<th>Аварии</th>
<th>Несчастные случаи со смертельным исходом</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2014 г.</td>
<td>2015 г.</td>
</tr>
<tr>
<td>Центральный федеральный округ (г. Москва)</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Московская область</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Рязанская область</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Тверская область</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Воронежская область</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Северо-Западный федеральный округ (г. Санкт-Петербург)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Южный федеральный округ (г. Ростов-на-Дону)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Краснодарский край</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Северо-Кавказский федеральный округ (г. Пятигорск)</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Чеченская Республика</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Уральский федеральный округ (г. Екатеринбург)</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Тюменская область</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Челябинская область</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Приволжский федеральный округ (г. Нижний Новгород)</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Нижегородская область</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Пермский край</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Республика Башкортостан</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Республика Мордовия</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Пензенская область</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Сибирский федеральный округ (г. Новосибирск)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Дальневосточный федеральный округ (г. Хабаровск)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Итого по России:</td>
<td>8</td>
<td>13</td>
</tr>
</tbody>
</table>

Аварии были допущены на опасных производственных объектах, поднадзорных Северо-Уральскому (5), Средне-Поволжскому (2), Северо-Западному (1), Центральному (1), Северо-Кавказскому (1), Волжско-Окскому (1), Приволжскому (1) и Уральскому (1) управлением Ростехнадзора.

Два несчастных случая со смертельным исходом зафиксированы на опасных производственных объектах, поднадзорных Северо-Уральскому управлению Ростехнадзора (табл. 73).
Распределение аварий и несчастных случаев со смертельным исходом
в 2014 и 2015 гг. по территориальным органам Ростехнадзора

<table>
<thead>
<tr>
<th>Территориальные органы Ростехнадзора</th>
<th>Аварии</th>
<th>Несчастные случаи со смертельным исходом</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2014 г.</td>
<td>2015 г.</td>
</tr>
<tr>
<td>Центральное управление</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Московская область</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Рязанская область</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Северо-Западное управление</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Тверская область</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Северо-Кавказское управление</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Краснодарский край</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Кавказское управление</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Чеченская Республика</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Северо-Уральское управление</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Тюменская область</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Уральское управление</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Челябинская область</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Средне-Поволжское управление</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Нижегородская область</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Пензенская область</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Воронежская область</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Приволжское управление</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Пермский край</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Волжско-Окское управление</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Республика Мордовия</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Западно-Уральское управление</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Республика Башкортостан</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Итого по России:</td>
<td>8</td>
<td>13</td>
</tr>
</tbody>
</table>

Анализ результатов технических расследований аварий показывает, что основными причинами возникновения аварий явились:
в 9 случаях (69,2 %) воздействие внутренних опасных факторов, связанных с физическим износом, коррозией металла и растрескиванием тела трубы под напряжением;
в 2 случаях (15,4 %) воздействие внешних опасных факторов, связанных с механическим повреждением газопровода вследствие нарушений при выполнении земляных работ в охранной зоне механизированым способом;
в одном случае (7,7 %) имела место ошибка персонала ремонтной бригады, связанная с нарушением требований проектной и конструкторской документации в части сборки фланцевых соединений на ОПО ОАО «Трансамиак»;
в одном случае (7,7 %) причины возникновения аварии на опасном производственном объекте, эксплуатируемом АО «Мостранснефтепродукт», устанавливаются (ведется расследование).

Наиболее крупная авария по экономическому ущербу авария произошла 19 августа 2015 г. на узле пропуска СОД НПС «Большая Сосновка» 1326 км магистрального нефтепровода «Сургут—Полоцк», вследствие разгерметизации трубопровода диаметром 500 мм произошел выход нефти на поверхность земли и ее последующее возгорание. Площадь разлива нефти и пожара составила 1800 м².

Комиссией по техническому расследованию причин аварии установлено, что авария произошла по причине внутренней коррозии в районе нижней образующей аварийной трубной секции, вызванной наличием в узле пропуска СОД застойной зоны, выпадением из нефти в осадок включений с большим молекулярным весом и образованием агрессивной среды по отношению металла трубы.

Причиной воспламенения газовоздушной смеси, образованной вследствие разгерметизации нефтепровода, явились короткое замыкание электрооборудования на задвижке узла пропуска СОД, вызванное механическим воздействием на электрические кабели и электрооборудование в результате выхода нефти на поверхность земли под высоким давлением.

Экономический ущерб от аварии составил 218,2 млн руб.

Аварии, причиной которых явились внешние опасные факторы, связанные с механическим повреждением газопроводов вследствие нарушений при выполнении земляных работ в охранной зоне механизованным способом, произошли в ОАО «Газпром трансгаз Краснодар» и ООО «Газпром трансгаз Нижний Новгород».

Авария, при которой пострадало 2 человека, произошла 7 апреля 2015 г. на газопроводе-отводе к г. Алатырь 59 км участка магистрального газопровода Сеченовского ЛПУМГ, вследствие разрыва трубы без возгорания.

Комиссией по техническому расследованию причин аварии установлено, что авария произошла по причине механического повреждения трубы газопровода, которое в условиях низкой ударной вязкости металла привело к образованию трещины, вследствие нарушения правил производства земляных работ в охранной зоне магистрального газопровода.

Экономический ущерб от аварии составил 1,3 млн руб.

Авария, причиной которой явилась ошибка персонала, вследствие нарушения требований проектной и конструкторской документации при проведении ремонтных работ, произошла на ОПО ОАО «Трансаммиак».

Информация об авариях, произошедших на опасных производственных объектах магистрального трубопроводного транспорта в 2015 г., размещена на официальном сайте Ростехнадзора — http://www.gosnadzor.ru в подразделе «Уроки, извлеченные из аварий» раздела «Надзор за объектами нефтегазового комплекса».

Сведения о выполнении мероприятий, предложенных комиссией по техническому расследованию причин аварий, после окончания сроков выполнения каждого пункта мероприятий, представляются руководителем территориального органа Ростехнадзора, на территории которого произошло происшествие, в центральный аппарат Ростехнадзора.

© Оформление. ЗАО НТЦ ПБ, 2016
Территориальными органами Ростехнадзора в 2015 г. проведено 3119 проверок соблюдения требований промышленной безопасности (в 2014 г. — 1971) в отношении юридических лиц, эксплуатирующих объекты магистрального трубопроводного транспорта, в том числе в рамках осуществления режима постоянного государственного надзора — 2344 мероприятия по контролю (в 2014 г. — 1338).

В результате проведенных проверок выявлено 9307 нарушений требований промышленной безопасности (в 2014 г. — 7487).

Наложено 1235 административных наказаний (в 2014 г. — 1253), в том числе 1231 случай наложения административных штрафов (в 2014 г. — 1229).

Общая сумма наложенных административных штрафов составила 35,804 млн руб. (в 2014 г. — 41,1 млн руб.), из них на граждан — 100,5 тыс. руб. (в 2014 г. — 337 тыс. руб.), на должностных лиц — 6,610 млн руб. (в 2014 г. — 6,136 млн руб.) и 29,094 млн руб. (в 2014 — 34,1 млн руб.) на юридических лиц.

В ходе проведенных проверок в отношении поднадзорных юридических лиц и систематизации наблюдений за исполнением обязательных требований промышленной безопасности предприятий трубопроводного транспорта выявлены следующие основные нарушения:

отсутствие правоустанавливающих документов на объекты недвижимости и земельные участки, на которых размещаются эксплуатируемые опасные производственные объекты;

несвоевременное проведение технического диагностирования газопроводов, испытаний и освидетельствования сооружений и технических устройств, применяемых на опасном производственном объекте, нарушение сроков проведения экспертиз промышленной безопасности зданий, сооружений и технических устройств, применяемых на опасном производственном объекте;

выявлены нарушения в организации и осуществлении производственного контроля, а также нарушения в организации и функционировании системы управления промышленной безопасностью;

не осуществляются учет и расследование инцидентов;

не обеспечено наличие и функционирование необходимых приборов и систем контроля за производственными процессами на опасном производственном объекте;

нарушения порядка проведения аттестации в области промышленной безопасности руководящего состава и инженерно-технического персонала;

несоблюдение сроков проведения регламентных работ по техническому обслуживанию оборудования;

несоблюдение требований Правил охраны магистральных трубопроводов, Правил охраны газораспределительных сетей сторонними организациями (несанкционированное ведение земляных работ и несанкционированные застройки в охранных зонах);

несоблюдение требований по ведению технической документации;

отсутствие охранной сигнализации по периметру ограждения газораспределительных станций, что снижает антитеррористическую защищенность объекта.

Территориальными органами Ростехнадзора при проверках поднадзорных предприятий анализируется соблюдение законодательно установленных процедур регулирования промышленной безопасности, влияющих на безопасную эксплуатацию опасных производственных объектов.
Важным направлением по контролю за промышленной безопасностью опасных производственных объектов является проверка организации и функционирования системы управления промышленной безопасностью и производственного контроля.

В организациях, эксплуатирующих опасные производственные объекты I и II классов опасности, созданы системы управления промышленной безопасностью и обеспечиваются условия их функционирования.

В рамках создания системы управления промышленной безопасностью в организациях разработаны и внедрены стандарты организации системы управления промышленной безопасностью и охраной труда.

На 175 предприятиях магистрального трубопроводного транспорта созданы и функционируют службы производственного контроля, положения о которых утверждены руководством предприятий.

На предприятиях проведено 37 678 мероприятий по обеспечению промышленной безопасности, из них 15 415 контрольно-профилактических проверок в рамках производственного контроля.

Наиболее характерными нарушениями в части организации и осуществления производственного контроля являются:

- нарушение сроков проведения проверок или формальность их проведения;
- отсутствие контроля за своевременным устранением выявленных нарушений;
- отсутствие контроля за своевременным проведением экспертизы промышленной безопасности технических устройств, зданий, сооружений.

Количество заявлений (материалов) на право осуществления юридическими лицами и индивидуальными предпринимателями деятельности в области промышленной безопасности опасных производственных объектов, представленных в территориальные органы Ростехнадзора в 2015 г., составило 11. По результатам рассмотрения заявительных документов выдано 3 лицензии, переоформлено 5 лицензий, отказано в предоставлении лицензии в 3 случаях.

Основными нарушениями лицензионных требований, выявленных территориальными органами Ростехнадзора в ходе проведения внеплановых выездных проверок являлись: отсутствие на праве собственности или ином законном основании земельных участков, зданий, строений и сооружений, на (в) которых размещаются объекты, а также технических устройств, применяемых на объектах; отсутствие внесенных в реестр положительных заключений экспертизы промышленной безопасности в соответствии со статьей 13 Федерального закона «О промышленной безопасности опасных производственных объектов»; нарушения функционирования системы управления промышленной безопасностью в случаях, предусмотренных статьей 11 Федерального закона «О промышленной безопасности опасных производственных объектов».

Обязательное страхование гражданской ответственности за причинение вреда в результате аварии или инцидента на опасном производственном объекте осуществляется организациями, эксплуатирующими опасные производственные объекты, в соответствии с законодательством Российской Федерации об обязательном страховании гражданской ответственности владельца опасного объекта за причинение вреда в результате аварии на опасном объекте. Всеми 222 организациями, эксплуатирующими опасные производственные объекты, заключены договоры страхования гражданской ответственности за причинение вреда в результате аварии или инцидента на опасном производственном объекте.
Повышение промышленной безопасности на опасных производственных объектах достигается эксплуатируемыми организациями при реализации планов модернизации, включая работ по реконструкции действующих и строительству новых объектов магистрального трубопроводного транспорта.

В целях обеспечения нормативно-правового регулирования в области промышленной безопасности при эксплуатации опасных производственных объектов и выработке единого системного подхода при оценке риска была проведена работа по актуализации нормативных документов и приведению их в соответствие с действующими федеральными нормами и правилами в области промышленной безопасности.

Кроме того, в целях реализации Федеральных норм и правил в области промышленной безопасности «Правила безопасности для опасных производственных объектов магистральных трубопроводов», утвержденных приказом Ростехнадзора от 6 ноября 2013 г. № 520 разработан проект Руководства по безопасности «Рекомендации по техническому диагностированию сварных вертикальных цилиндрических резервуаров для нефти и нефтепродуктов».

2.2.12. Металлургические и коксохимические производства и объекты

В государственном реестре опасных производственных объектов на 1 января 2016 г. зарегистрировано 1421 металлургическое и коксохимическое производство, эксплуатацию которых осуществляют 968 поднадзорных организаций. К I классу опасности относится 31 объект, ко II классу — 293.

В 2015 г. к числу основных технических устройств, эксплуатируемых на объектах металлургического производства, относились:
- 44 доменные печи для производства чугуна (в 2014 г. — 45);
- 693 электродуговые печи для производства стали (в 2014 г. — 687);
- 268 прокатных станов (в 2014 г. — 276).
Количество работников в металлургической отрасли в 2015 г. составило около 750 тыс. человек.

За отчетный период в черной металлургии производство чугуна составило 53,2 млн т, стали — 75,1 млн т, проката черных металлов — 66,2 млн т, стальных труб — 10,7 млн т.

В цветной металлургии производство первичного алюминия составило 95,9 % к производству 2014 г., производство меди рафинированной — 97,9 % и никеля — 96,7 %.

Показатели аварийности и травматизма со смертельным исходом за период с 2008 по 2015 г. приведены на рис. 15. Резкого увеличения количества случаев аварийности и производственного травматизма в 2015 г. по сравнению с более ранними годами на металлургических предприятиях и производствах не произошло. Показатели последних трех лет достаточно ровные.

<table>
<thead>
<tr>
<th>Металлургическая промышленность</th>
<th>2014 г.</th>
<th>2015 г.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Аварии</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Смертельный травматизм</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>Групповой травматизм</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Ущерб от аварий, млн руб.</td>
<td>16,2</td>
<td>85,8</td>
</tr>
</tbody>
</table>
В результате аварий по сравнению с 2014 г. увеличилось общее количество пострадавших, в том числе со смертельным исходом (табл. 75).

Таблица 75

<table>
<thead>
<tr>
<th>Год</th>
<th>Количество аварий</th>
<th>Численность травмированных работников всего</th>
<th>со смертельным исходом</th>
<th>с тяжелым травмированием</th>
<th>с легким травмированием</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>4</td>
<td>15</td>
<td>6</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>2014</td>
<td>2</td>
<td>9</td>
<td>2</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

В 2015 г. произошло четыре аварии, связанные с разрушением технических устройств, деформацией несущих колон здания и разрушением производственных трубопроводов. Общая сумма нанесенного в результате аварий ущерба составила 85,8 млн руб.

1 октябрь 2015 г. в ЗАО «Карабашмедь», Челябинская область (поднадзорно Уральскому управлению), произошла авария на газоохладителе печи «Аусмелт» в здании металлургического цеха. При остановке печи для устранения течи воды на центральном желобе и замени фурмы в результате превышения допустимых нагрузок, вызванного отложениями пыли на несущей конструкции газоохладителя, произошло его разрушение. Обрыв бункерных кессонов повлек разрушение металло-конструкций и оборудования комплекса «Аусмелт». В результате аварии травмированы 10 человек, в том числе 2 человека смертельно.

Технической причиной аварии явилось превышение допустимых нагрузок на конструкции газоохладителя от отложений пыли вследствие нарушения газодинамического и теплового режима работы газоохладителя. Организационная причина аварии — неудовлетворительная организация производства работ в части неисполнения требований по обслуживанию газоходной системы газоохладителя печи «Аусмелт», что привело к отложению пыли свыше проектных нагрузок.

26 ноября 2015 г. в ООО «Тихвинский ферросплавный завод», Ленинградская область (поднадзорно Северо-Западному управлению), в плавильном цехе произошла авария из-за нарушения целостности трубопровода маслосохладителя печного трансформатора. В результате попадания масла в горячий шлак произошел пожар от температурного воздействия на опорные колонны трансформаторного помещения произошло обрушение кровли. Пострадавших в результате аварии нет. Причинами аварии явился процесс перемещения остывшего шлака, а также эксплуатация шлаковен с нарушением порядка, установленного инструкциями. Погрузка емкостей со шлаком на передаточную тележку выполнялась более чем в один ярус и более чем в один ряд.

2 сентябрь 2015 г. в ОАО «Фрязинский экспериментальный завод», Московская область (поднадзорно Приокскому управлению), в литейном цехе производства алюминиевых слитков при розжиге печи нормализации алюминиевого профиля произошел неконтролируемый взрыв внутри печи. В результате взрыва газовоздушной смеси печь нормализации и вспомогательное оборудование получили повреждения, не подлежащие восстановлению. От полученных травм начальник цеха скончался в больнице. Организационными причинами аварии являлись:

нарушения установлённой заводом-изготовителем последовательности опера-
ций по розжигу печи;
отсутствие допуска к самостоятельному обслуживанию газового оборудования
цеха у начальника цеха.
В 2015 г. основными травмирующими факторами явились (табл. 76):
выбросы расплавов из металлургических агрегатов — 80 %;
обрушение частей конструкций и технических устройств — 10 %;
взрывы технологического газа в технических устройствах — 10 %.

Таблица 76
Распределение несчастных случаев со смертельным исходом
по травмирующим факторам

<table>
<thead>
<tr>
<th>Травмирующие факторы</th>
<th>Количество смертельно травмированных</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2014 г.</td>
</tr>
<tr>
<td>Воздействие технологических газов</td>
<td>1</td>
</tr>
<tr>
<td>Воздействие вращающихся и движущихся частей оборудования</td>
<td>3</td>
</tr>
</tbody>
</table>
| Выбросы расплавов и раскаленных газов из металлургических аг-
регатов | 4 | 8 |
| Обрушение конструкций, оборудования, материалов | 1 | 1 |
| Всего: | 9 | 10 |

28 января 2015 г. в ООО «Майдаковский завод», Ивановская область (поднад-
зорно Центральному управлению), при очистке вагранки от сплавов металла произ-
шло падение кирпича футеровки на голову старшего мастера заливочного участ-
ка литейного цеха. В результате черепно-мозговой травмы и травмы позвоночника
пострадавший скончался. Причина смертельной травмы — нарушение требований
технологической инструкции по проверке состояния футеровки шахты печи.
24 мая 2015 г. в ЗАО «Челябвторцветмет», г. Челябинск (поднадзорно Уральско-
му управлению), в плавильном пролете цеха алюминиевых сплавов на площадке
роторной печи РН-5000 во время разливки расплавленного металла в изложницы
мастер плавильного участка, соприкоснувшись частями тела с зеркалом расплав-
ленного металла, получил смертельные термические ожоги. Причина смертельной
травмы — несоблюдение требований промышленной безопасности при осущест-
влении плавки металла.
8 июля 2015 г. в ОАО «Магнитогорский металлургический комбинат», Челябин-
ская область (поднадзорно Уральскому управлению), в кислородно-конвертерном
цехе участка внепечной обработки стали на установке печь-ковш произошел группо-
вой несчастный случай. Несоблюдение временного интервала между подачами на-
весок ферросплавов и легирующих добавок и прерыванием слива плавки при вики-
пании металла в ковше привело к окомкованию и оседанию навесок на днище ков-
ша, в результате чего произошел выход шлакометаллической эмульсии через борт
ковша. Двое подручных сталевара получили тяжелые термические ожоги. Причи-
нами смертельной травмы стали несовершенство технологического процесса и не-
достаточность разработанных мер безопасности.
Общими основными причинами смертельных несчастных случаев явились:
нарушение технологии металлургических процессов — 60 %;
неудовлетворительная организация работ — 40 %.

© Оформление. ЗАО НТЦ ПК, 2016
Это свидетельствует о недостаточной эффективности производственного контроля на поднадзорных опасных производственных объектах.

В 2015 г. количество случаев группового травматизма по сравнению с 2014 г. возросло на 20%, общее количество пострадавших в групповых несчастных случаях увеличилось на 31%, в том числе получивших смертельные травмы — на 75% (табл. 77).

<table>
<thead>
<tr>
<th>Год</th>
<th>Количество случаев</th>
<th>Численность травмированных работников при случаях группового травматизма</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>всего</td>
<td>со смертельным исходом</td>
</tr>
<tr>
<td>2015</td>
<td>5</td>
<td>21</td>
</tr>
<tr>
<td>2014</td>
<td>4</td>
<td>16</td>
</tr>
</tbody>
</table>

Численность травмированных работников при случаях группового травматизма

4 мая 2015 г. в ОАО «Новолипецкий металлургический комбинат», Липецкая область (поднадзорно Верхне-Донскому управлению), в цехе по производству огнеупоров произошел групповой несчастный случай со смертельным исходом. Во время работы вращающей печи при зависании марганцевой извести произошло обрушение материала из пересыпного колодца в холодильный барабан. Вследствие обрушения марганцевой извести сменный мастер и обжиговщик на печах при устранении затора получили смертельные ожоги. Причина — несоблюдение технологии выполнения работ по устранению затора извести в пересыпном колодце (печь не была остановлена и охлаждена).

6 октября в ООО «Ферролюкс-Рус», Калужская область (поднадзорно Приокскому управлению), произошли авария и групповой несчастный случай на участке по производству ферросплавов на комплексе плавильном индукционной печи «INDUCTOTERM» с расплавом ферротитана. Во время работы печи произошел хлопок с выбросом расплава металла из печи. В результате выброса были травмированы четыре человека, из них три человека смертельно. Организационная причина смертельного травматизма — недостаточность разработанных мер по безопасности (в технологической инструкции отсутствуют требования к выполнению работ при повторной плавке в застывшей печи).

Основные причины групповых несчастных случаев:
80% — нарушения технологии металлургических процессов;
10% — неудовлетворительная организация выполнения работ;
10% — техническое состояние сооружений.

Наибольшее количество случаев смертельного травматизма произошло на опасных производственных объектах, поднадзорных Уральскому и Приокскому управлению, — 3. На объектах, поднадзорных Верхне-Донскому и Центральному управлением, произошло по 2 смертельных случая. По сравнению с 2014 г. наибольший рост показателя смертельного травматизма допущен на поднадзорных объектах Приокского и Центрального управлений (табл. 78).

Работы по замене и модернизации оборудования осложнены сложившейся экономической ситуацией. Основной проблемой металлургических предприятий остается медленная модернизация производств, связанная с заменой основного и вспомогательного технологического оборудования. В отчетный период на предприятиях продолжались работы по модернизации и реконструкции оборудования и внедрению современных технологий.
Таблица 78

Распределение аварий и несчастных случаев по территориальным органам и субъектам Российской Федерации

<table>
<thead>
<tr>
<th>Территориальные управления Ростехнадзора, субъекты Российской Федерации</th>
<th>Аварийность</th>
<th>Групповой травматизм</th>
<th>Смертельный травматизм</th>
</tr>
</thead>
<tbody>
<tr>
<td>Центральное управление</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Московская область</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Ивановская область</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Верхне-Донское управление</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Липецкая область</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Волжско-Окское управление</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Нижегородская область</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Нижне-Волжское управление</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Волгоградская область</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Приокское управление</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Тульская область</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Калужская область</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Северо-Западное управление</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Ленинградская область</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Вологодская область</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Западно-Уральское управление</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Оренбургская область</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Уральское управление</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Свердловская область</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Челябинская область</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Сибирское управление</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Омская область</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Итого:</td>
<td>2</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

В ОАО «Объединенная электрометаллургическая компания» в I квартале 2015 г. начато строительство второй очереди новой газоочистки. Это позволит увеличить объем производства электросталеплавильного цеха на 400 тыс. т в год и существенно уменьшит выбросы вредных веществ в атмосферу. К настоящему времени прошли приемочные испытания новая кислородная станция. Проект реконструкции прошел государственную экспертизу. В составе проектной документации разработана новая декларация промышленной безопасности.

В ООО «Медногорский медно-серный комбинат» завершены работы по реконструкции цеха по производству серной кислоты. В результате этого увеличилось производство серной кислоты, улучшились условия труда работников сернокислотного производства, уменьшилось количество выбросов неочищенных газов в атмосферу. Закончены работы по техническому перевооружению цеха по производству германия. В рамках технического перевооружения медеплавильного цеха осуществляется ряд проектов по утилизации отходящих газов от плавильных агрегатов: установка резервных компрессоров, техническое перевооружение склада меди медеплавильного цеха с устройством отделения сбора пыли, техническое перевооружение газоходной системы медеплавильного цеха с установкой рукавного фильтра, газообразное газоимпульсных установок.
ОАО «Магнитогорский металлургический комбинат» совместно с ОАО «ММК-МЕТИЗ» освоило производство проката из стали марки 20Г2Р. Эта сталь применяется для изготовления высокопрочного крепежа, используемого при сборке тракторов и автомобилей в ОАО «АвтоВАЗ», ОАО «КамАЗ». Освоение новых видов продукции позволило расширить марочный сортамент и укрепить свои позиции на российском рынке. В планах на 2016 г. увеличение продаж на внутреннем рынке на 700 тыс. т.

В ЗАО «Карабашмедь» реализована масштабная программа технологической и экологической модернизации, общие инвестиции за 2010–2015 гг. в модернизацию производства составили 7,9 млрд руб. Вышел на проектную производительность волочильный цех в ЗАО «Уральский завод прецизионных сплавов». Проходит строительство нового электролизного производства ОАО «Уралэлектромедь». В ООО «Тулачермет-Сталь» ведется строительство литейно-прокатного комплекса по выплавке качественной углеродистой стали конвертерным способом с годовым объемом производства жидкой стали до 1,65 млн т и до 1,5 млн т проката.

В 2015 г. надзор за соблюдением требований промышленной безопасности на металлургических производствах осуществляли 72 инспектора территориальных органов, при этом 18 из них совмещали надзор за металлургическими объектами с другими видами надзора. Основные показатели надзорной деятельности приведены в табл. 79.

Таблица 79
Основные показатели надзорной и контрольной деятельности на металлургических производствах в 2014 и 2015 гг.

<table>
<thead>
<tr>
<th>Показатели надзорной деятельности</th>
<th>2014 г.</th>
<th>2015 г.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Количество занятых штатных единиц, выполняющих функции государственного надзора</td>
<td>81</td>
<td>72</td>
</tr>
<tr>
<td>Число поднадзорных эксплуатирующих организаций</td>
<td>1030</td>
<td>968</td>
</tr>
<tr>
<td>Общее количество проведенных проверок</td>
<td>1849</td>
<td>1649</td>
</tr>
<tr>
<td>Выявлено правонарушений</td>
<td>8123</td>
<td>7238</td>
</tr>
<tr>
<td>Общее количество административных наказаний, наложенных по итогам проверок, в том числе:</td>
<td>835</td>
<td>780</td>
</tr>
<tr>
<td>административные приостановления деятельности</td>
<td>51</td>
<td>23</td>
</tr>
<tr>
<td>штрафы на юридическое лицо</td>
<td>135</td>
<td>183</td>
</tr>
<tr>
<td>Общая сумма наложенных административных штрафов, млн руб.</td>
<td>44,4</td>
<td>51,6</td>
</tr>
<tr>
<td>в том числе:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>на юридическое лицо</td>
<td>30,3</td>
<td>39,4</td>
</tr>
</tbody>
</table>

По сравнению с 2014 г. количество поднадзорных эксплуатирующих организаций уменьшилось на 6 %, а численность инспекторского состава — на 11 %. Соответственно число проведенных проверок уменьшилось на 11 % и количество выявленных нарушений — на 11 %.

Средняя нагрузка по числу проверок на одного инспектора в год составила 23 проверки и среднее количество выявленных нарушений на одного инспектора в год составило 100 нарушений. Перечисленные показатели сохранились на уровне 2014 г. Сохранился на прежнем уровне и показатель среднего количества нарушений, выявленных в ходе одной проверки (4 нарушения на одну проверку).
В 2015 г. общее количество административных наказаний за выявленные правонарушения по сравнению с 2014 г. уменьшилось на 7 %, в том числе количество административных приостановлений деятельности — на 55 %.

Общая сумма наложенных штрафов увеличилась на 16 %. Увеличилось на 36 % количество штрафов на юридическое лицо. Сумма штрафов увеличилась на 30 %. Приведенные данные свидетельствуют о том, что при проведении проверок металлургических объектов инспекторским составом в достаточной мере используются полномочия, определенные Кодексом Российской Федерации об административных правонарушениях.

Центральным аппаратом Ростехнадзора совместно с сотрудниками территориальных органов проведена плановая выездная проверка ОАО «ТАГМЕТ». Проверен электросталеплавильный цех. Выявлено 106 нарушений Федерального закона № 116-ФЗ «О промышленной безопасности опасных производственных объектов». Привлечены к административной ответственности за нарушение требований промышленной безопасности юридическое лицо ОАО «ТАГМЕТ» (наложены штрафы в размере 400 тыс. руб.), 12 должностных лиц, на них наложены штрафы в размере 246 тыс. руб. Общая сумма наложенных штрафов составила 646 тыс. руб.

Нарушения, выявленные в результате проверки:
не закреплена ответственность руководителей компании и структурных подразделений за организацию и осуществление производственного контроля, не проводится оценка производственных рисков и выполнения мероприятий по достижению значений допустимого риска после проводимых ремонтов машин и оборудования;
нарушены установленные требования при эксплуатации зданий, оборудования и технических устройств;
не переоформлены лицензии на эксплуатацию взрывопожароопасных и химически опасных производственных объектов.

В 2015 г. Енисейским управлением выявлено грубое нарушение требований промышленной безопасности в ОАО «Завод полупроводникового кремния». В связи с поступившим от граждан обращением проведено обследование предприятия. В результате проверки установлено, что на предприятии создана угроза жизни и здоровью населения в связи с наличием опасного производственного объекта — склада сырья хлорсиланов. При этом отсутствует экспертиза промышленной безопасности документации на консервацию склада, не разработан план мероприятий по локализации и ликвидации последствий возможных аварий на объекте. Материалы дела об административном правонарушении направлены в суд для рассмотрения и принятия решения об административном приостановлении деятельности по эксплуатации опасного производственного объекта.

В 2015 г. вступил в силу приказ Ростехнадзора «Об утверждении Федеральных норм и правил в области промышленной безопасности «Правила безопасности при получении, транспортировании, использовании расплавов черных и цветных металлов и сплавов на основе этих расплавов» (ФНП). За основу разработки ФНП были взяты практические все действующие в металлургии правила безопасности (23 документа). Это позволило конкретизировать на современном уровне требования в области промышленной безопасности на поднадзорных предприятиях, устранить избыточные административные барьеры для субъектов предпринимательской деятельности в Российской Федерации, внедрить на предприятиях современные технологии, повышать уровень ответственности в области промышленной безопасности эксплуатирующих организаций.
Основные отличия новых ФНП от предыдущих сводов правил заключаются в следующем:
отсутствуют требования к изготовлению оборудования в соответствии с законодательством в области технического регулирования;
исключены требования к строительству металлургических объектов в соответствии с градостроительным законодательством и передачей полномочий в саморегулируемые организации;
исключены избыточные и устаревшие требования безопасности.
Прорабатывается новая концепция ФНП по безопасности в металлургической отрасли, основанная на риск-ориентированном подходе. Создана группа с привлечением комиссии Российского союза промышленников и предпринимателей (РСПП) по металлургическому и горнорудному комплексу. Проведено два заседания группы. Предложен проект технического задания для подготовки методики оценки риска аварий на опасных производственных объектах металлургических производств.

В 2015 г. рассмотрен и утвержден проект руководства по безопасности «Порядок разработки планов мероприятий по локализации и ликвидации последствий аварий на опасных производственных объектах, получения, транспортирования, использования расплавов черных и цветных металлов и сплавов на основе этих расплавов».
На поднадзорных предприятиях металлургического комплекса организованы службы производственного контроля, разработаны положения об организации и осуществлении производственного контроля за обеспечением исполнения требований промышленной безопасности.
На большинстве крупных металлургических предприятиях службы производственного контроля укомплектованы подготовленными, квалифицированными работниками, имеющими опыт работы в цехах и производствах. Производственный контроль является на поднадзорных предприятиях составной частью системы управления промышленной безопасностью и осуществляется эксплуатирующей организацией путем проведения комплекса мер, направленных на обеспечение безопасного функционирования опасных производственных объектов.
Деятельность спасателей осуществляется в соответствии с законодательством, нормативными правовыми актами. Готовность профессиональных аварийно-спасательных служб (ПАСФ) к выполнению аварийно-спасательных работ, предусмотренных планами мероприятий по локализации и ликвидации последствий аварий на опасных производственных объектах, по спасению и эвакуации людей, в целом по отрасли оценивается как удовлетворительная.
В соответствии с требованиями федерального законодательства в области лицензирования центральным аппаратом Ростехнадзора выдавались лицензии на деятельность по эксплуатации взрывопожароопасных и химически опасных производственных объектов I, II и III классов опасности, а также экспертным организациям, проводящим экспертизу промышленной безопасности. Переоформлена 21 лицензия и отказано в переоформлении 5 лицензий на осуществление деятельности по эксплуатации взрывопожароопасных и химически опасных производственных объектов I, II и III классов опасности. При лицензировании деятельности по проведению экспертизы промышленной безопасности предоставлена 1 лицензия, переоформлено — 65, отказано в переоформлении — в 18 случаях.
Состояние промышленной безопасности на поднадзорных металлургических предприятиях и производствах в 2015 г. можно оценить как стабильное.
Общей проблемой для подконтрольных предприятий, производств и объектов остается рост числа отработавших нормативный срок эксплуатации зданий и сооружений, агрегатов и оборудования. На подконтрольных предприятиях отработали нормативный срок службы: зданий — 76 %, сооружений — 25 %, дымовых труб — 39 %.

На большинстве предприятий малого и среднего бизнеса продолжается сокращение штатов квалифицированных, специализированных основных и вспомогательных служб, которые должны своевременно и качественно проводить капитально-восстановительные и планово-предупредительные ремонты эксплуатируемого оборудования. В большей степени это касается предприятий неметаллургических отраслей промышленности, эксплуатирующих литейные производства.

В реконструкции и техническом перевооружении нуждаются многие предприятия, но работы по совершенствованию и обновлению оборудования ведутся медленно. На некоторых предприятиях отрасли составлены бизнес-планы на техническое перевооружение, но из-за неудовлетворительного финансового состояния планы постоянно пересматриваются.

Выделяются следующие основные проблемы, встречающиеся при эксплуатации опасных производственных объектов металлургического производства:
малые темпы модернизации оборудования, замены технических устройств, отработавших нормативный срок, на новые;
недостаточность автоматизации устаревшего оборудования, задействованного в производственном процессе на опасных производственных объектах;
ненадежное проведение капитальных ремонтов производственных зданий и сооружений, имеющих длительный срок эксплуатации.

Для повышения эффективности надзорной деятельности инспекторского состава, осуществляющего надзор за металлургическими объектами, снижения уровня аварийности и травматизма, обеспечения промышленной безопасности на поднадзорных металлургических предприятиях предлагается:
продолжать работу по реализации на подконтрольных предприятиях требований законодательства в области промышленной безопасности. При этом особое внимание необходимо уделять повышению эффективности функционирования системы управления промышленной безопасностью;
продолжать работу по подготовке и повышению квалификации государственных инспекторов и оперативно решать вопросы комплектования инспекторского состава квалифицированными кадрами;
в систему управления промышленной безопасностью организации включить систему производственного контроля, при этом распространить систему управления промышленной безопасностью на опасные производственные объекты всех классов опасности;
продолжать работу по проработке новой концепции ФНП по безопасности в металлургической отрасли, основанной на рисково-ориентированном подходе;
территориальным органам в связи с проведением эксплуатирующими организациями разделочной регистрации объектов металлургического производства, связанных единым технологическим процессом, необходимо провести работу по переегистрации таких объектов с присвоением им наименования и класса опасности на основании анализа всех выявленных признаков опасности.
2.2.13. Объекты газораспределения и газопотребления

В 2015 г. федеральный государственный надзор в области промышленной безопасности осуществляется в отношении 60 428 опасных производственных объектов газораспределения и газопотребления (далее — опасные производственные объекты), в том числе:

4 опасных производственных объектов I класса опасности;
1114 опасных производственных объектов II класса опасности;
57 783 опасных производственных объектов III класса опасности;
1527 опасных производственных объектов IV класса опасности.

В системе газораспределения и газопотребления газопроводы протяженностью 852,9 тыс. км снабжают газом 20 310 поднадзорных промышленных предприятий, 422 тепловые электрические станции, 56 854 газовые отопительные и производственные котельные.

В 2015 г. на объектах газораспределения и газопотребления произошло 33 аварии, по сравнению с аналогичным периодом 2014 г. количество аварий увеличилось на 12 (36 %).

Экономический ущерб от аварий, произошедших в 2015 г., превысил 312,87 млн руб., тогда как за 2014 г. ущерб составил 52,47 млн руб.

В 2015 г. произошло уменьшение случаев смертельного травматизма по сравнению с 2014 г. За 12 месяцев 2015 г. количество травмированных в результате аварии составило 17 человек, в том числе смертельно травмированных — 2, за аналогичный период 2014 г. количество травмированных составило 7 человек, из них смертельно травмированных — 3 (рис. 16).

Общее количество смертельно травмированных в 2015 г. составило 4 человека. По сравнению с аналогичным периодом 2014 г. количество случаев смертельного травматизма уменьшилось на 3 (43 %).

Количество групповых несчастных случаев в 2015 г. составило 5 случаев, что равно количеству случаев в 2014 г.

Рис. 16. Динамика аварийности и производственного травматизма со смертельным исходом за 2010—2015 гг. на опасных производственных объектах
Согласно проведенному анализу 43 % (14 аварий) из общего количества аварий за 12 месяцев 2015 г. связано с механическим и коррозионным повреждением газопроводов, доля которых по сравнению с тем же периодом 2014 г. уменьшилась на 9 %. Увеличилось на 4 аварии количество аварий, связанных с неисправностью оборудования, утечками газа и взрывом при розжиге газоиспользующих установок, при этом доля от общего количества аварий за 2015 г. уменьшилась на 2 %. Количество аварий, связанных с воздействием природных явлений, составляет 12 % (4 аварий). По иным видам произошли 3 аварии (9 %), что на 1 аварию больше, чем в 2014 г. (табл. 80).

Распределение аварий на опасных производственных объектах газораспределения и газопотребления по видам

<table>
<thead>
<tr>
<th>Виды аварий</th>
<th>Число аварий</th>
<th>2014 г.</th>
<th>2015 г.</th>
<th>+/−</th>
</tr>
</thead>
<tbody>
<tr>
<td>Механические повреждения подземных газопроводов</td>
<td>9</td>
<td>42</td>
<td>9</td>
<td>28</td>
</tr>
<tr>
<td>Мех. повреждения газопроводов автотранспортом</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Повреждения в результате природных явлений</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>Коррозионные повреждения наружных газопроводов</td>
<td>2</td>
<td>10</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>Разрывы сварных стыков</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Утечка газа, выход из строя оборудования в ГРП (ШРП), газопотребляющего оборудования</td>
<td>2</td>
<td>10</td>
<td>7</td>
<td>21</td>
</tr>
<tr>
<td>Взрывы при розжиге газоиспользующих установок и неисправность оборудования котла</td>
<td>3</td>
<td>14</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>Неисправность оборудования СУГ</td>
<td>3</td>
<td>14</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>Иные</td>
<td>2</td>
<td>10</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>Всего:</td>
<td>21</td>
<td>100</td>
<td>33</td>
<td>100</td>
</tr>
</tbody>
</table>

Анализ результатов расследования технических и организационных причин произошедших несчастных случаев в 2015 г. показывает, что один несчастный случай (25 %) произошел по причине отравления продуктами неполного сгорания газа, что на 3 несчастных случая меньше, чем в 2014 г.; один несчастный случай (25 %) произошел в результате взрыва газовоздушной смеси, что на один несчастный случай меньше, чем в 2014 г.; один несчастный случай (25 %) произошел в результате термического воздействия; один несчастный случай (25 %) произошел по прочим причинам (табл. 81).

Распределение несчастных случаев со смертельным исходом на опасных производственных объектах газораспределения и газопотребления по травмирующим факторам

<table>
<thead>
<tr>
<th>Травмирующие факторы</th>
<th>Число несчастных случаев со смертельным исходом</th>
<th>2014 г.</th>
<th>2015 г.</th>
<th>+/−</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>%</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>Отравления продуктами неполного сгорания газа</td>
<td>4</td>
<td>57</td>
<td>1</td>
<td>25</td>
</tr>
<tr>
<td>В результате взрыва газовоздушной смеси</td>
<td>2</td>
<td>29</td>
<td>1</td>
<td>25</td>
</tr>
<tr>
<td>Термическое воздействие</td>
<td>1</td>
<td>14</td>
<td>1</td>
<td>25</td>
</tr>
<tr>
<td>Прочие</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>25</td>
</tr>
<tr>
<td>Всего:</td>
<td>7</td>
<td>100</td>
<td>4</td>
<td>100</td>
</tr>
</tbody>
</table>

© Оформление. ЗАО НТЦ ПБ, 2016
Наибольшее количество аварий произошло на объектах газораспределения и газопотребления, поднадзорных Кавказскому управлению Ростехнадзора (6 случаев), Нижне-Волжскому управлению (4 случая), Уральскому управлению (4 случая), Северо-Кавказскому управлению (3 случая), Сибирскому управлению (3 случая) и Северо-Уральскому управлению (3 случая) (табл. 82).

<table>
<thead>
<tr>
<th>Территориальное управление Ростехнадзора, наименование субъекта Российской Федерации</th>
<th>Аварийность</th>
<th>Несчастные случаи со смертельным исходом</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2014 г.</td>
<td>2015 г.</td>
</tr>
<tr>
<td>Межрегиональное технологическое управление (г. Москва)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Центральное управление</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Московская область</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Смоленская область</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Тверская область</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Владимирская область</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Верхне-Донское управление</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Воронежская область</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Липецкая область</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Белгородская область</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Пруковское управление</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Тульская область</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Брянская область</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Северо-Западное управление</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>г. Санкт-Петербург</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Ленинградская область</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Республика Карелия</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Вологодская область</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Печорское управление</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Республика Коми</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Северо-Кавказское управление</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Краснодарский край</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Ростовская область</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Нижне-Волжское управление</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Волгоградская область</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Астраханская область</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Пензенская область</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Кавказское управление</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Ставропольский край</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Кабардино-Балкарская Республика</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Республика Дагестан</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Республика Ингушетия</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Западно-Уральское управление</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Кировская область</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Несчастные случаи со смертельным исходом зафиксированы на опасных производственных объектах, поднадзорных Центральному управлению (1), Нижне-Волжскому управлению (1), Приокскому управлению (1) и Межрегиональному технологическому управлению (1).

Анализ результатов технических расследований аварий показывает, что основными причинами возникновения аварий явились:

внешние опасные факторы (в 15 случаях (46 %), связанные с механическим повреждением газопроводов вследствие воздействия посторонних лиц и организаций (9 случаев — 28 %); с механическим повреждением газопроводов автотранспортом (1 случай — 3 %); с повреждением газопроводов в результате природных явлений (4 случая — 12 %); иными причинами (1 случай — 3 %);

внутренние опасные факторы (в 13 случаях (39 %), связанные с коррозионным повреждением газопроводов (3 случая — 9 %); с утечкой газа и выходом из строя оборудования (4 случая — 12 %); с разрывом сварного стыка (1 случай — 3 %); с неисправностью оборудования СУГ (3 случая — 9 %); с иными причинами (2 случая — 6 %);

ошибки персонала (в 5 случаях (15 %), связанные с нарушением требований организации производства опасных работ (взрывы при розжиге газоиспользующих установок и неисправность оборудования котла — 2 случая (6 %); утечкой газа и выходом из строя оборудования (3 случая — 12 %).}

Аварии, причиной которых явились внешние опасные факторы, связанные с механическим повреждением газопроводов вследствие воздействия посторонних лиц и организаций, произошли в ОАО «Газпром газораспределение Краснодар», ОАО «Астраханьгазсервис» (2 случая), ОАО «Газпром газораспределение

<table>
<thead>
<tr>
<th>Территориальное управление Ростехнадзора, наименование субъекта Российской Федерации</th>
<th>Аварийность</th>
<th>Несчастные случаи со смертельным исходом</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2014 г.</td>
<td>2015 г.</td>
</tr>
<tr>
<td>Приволжское управление</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Чувашская Республика — Чувашия</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Средне-Поволжское управление</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Самарская область</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Северо-Уральское управление</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Ханты-Мансийский АО — Югра</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Ямало-Ненецкий АО</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Уральское управление</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Курганская область</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Свердловская область</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Челябинская область</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Сибирское управление</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Алтайский Край</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Новосибирская область</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Омская область</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Енисейское управление</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Иркутская область</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Итого:</td>
<td>21</td>
<td>33</td>
</tr>
</tbody>
</table>

© Оформление. ЗАО НТЦ ПБ, 2016

Аварии, причиной которых явились ошибки персонала, связанные с нарушением требований организации производства опасных работ, произошли в МУП «Теплосеть», ИП Чаус А.Г., ООО «СГК», ОАО «Газпром газораспределение Тула», ОАО «Теплосеть».

Наиболее крупная авария произошла 15 января 2015 г. на предприятии ООО «Руднево». В результате утечки природного газа произошел взрыв газовоздушной смеси с последующим возгоранием по всей площади производственного помещения. В результате пожара произошло обрушение перекрытия и кровли здания на площади 1200 м². Получили травмы (ожоги различной степени тяжести) 7 человек, один со смертельным исходом.

Комиссией по техническому расследованию аварии установлено, что причинами, приведшими к разрушению газового оборудования и газопроводов, явились: образование взрывоопасной смеси в результате разгерметизации газового оборудования и газопроводов ГРУ, находившегося на расстоянии нескольких метров от источника открытого огня (пламени горелок работающего оборудования для «опалки и отпаривания туш»); эксплуатация газоиспользующего оборудования с нарушением требований промышленной безопасности; неудовлетворительная организация и осуществление производственного контроля, отсутствие системы промышленной безопасности.

Экономический ущерб от аварии составил 278,8 млн руб. (89% экономического ущерба от аварий, произошедших за 2015 г.).

Информация об авариях, произошедших на опасных производственных объектах в 2015 г., размещена на официальном сайте Ростехнадзора в подразделе «Уроки, извлеченные из аварий» раздела «Надзор за объектами нефтегазового комплекса».

Сведения о выполнении мероприятий, предложенных комиссией по техническому расследованию причин аварий, после окончания сроков выполнения каждого пункта мероприятий, представляются руководителем территориального органа Ростехнадзора, на территории которого произошло происшествие, в центральный аппарат Ростехнадзора.

По результатам проверок привлечено к административной ответственности 4474 должностных (в 2014 г. — 4924) и 1977 юридических лиц (в 2014 г. — 1641). Об-
щая сумма наложенных административных штрафов составила 410 971,4 тыс. руб. (в 2014 г. — 363 309,2 тыс. руб.).

Количество заявлений (материалов) на право осуществления юридическими лицами и индивидуальными предпринимателями деятельности в области промышленной безопасности опасных производственных объектов, представленных в территориальные органы Ростехнадзора в 2015 г., составило 5127. По результатам рассмотрения заявителей документов выдано 1458 лицензий, переоформлено 3183 лицензии, отказано в предоставлении лицензии в 466 случаях. В 2 случаях приостановлено действие лицензии и в 2 случаях возобновлено действие лицензии, в 16 случаях продлено действие лицензии.

Основными нарушениями лицензионных требований и условий, выявленными территориальными органами Ростехнадзора в ходе проведения внеплановых выездных проверок, явились:

отсутствие у эксплуатирующих организаций договоров на обслуживание с профессиональными аварийно-спасательными службами; отсутствие создаваемых в соответствии с законодательством Российской Федерации резервов финансовых средств и материальных ресурсов для локализации и ликвидации последствий аварий;

несвоевременное выполнение предписаний и мероприятий по программам проведения объектов к требованиям промышленной безопасности;

несоблюдение порядка подготовки и аттестации в области промышленной безопасности руководящего состава и инженерно-технического персонала, осуществляющего деятельность на взрывопожароопасных и химически опасных производственных объектах.

В 2015 г. из 41 476 организаций, эксплуатирующих опасные производственные объекты (в 2014 г. — 43 258), в 856 организациях созданы службы производственно-гого контроля (в 2014 г. — 807).

В организациях, эксплуатирующих опасные производственные объекты I и II классов опасности, созданы системы управления промышленной безопасностью и обеспечиваются условия их функционирования.

Службами производственного контроля организаций в 2015 г. разработано 37 514 мероприятий, направленных на обеспечение промышленной безопасности опасных производственных объектов (в 2014 г. — 35 480).

В 2015 г. из запланированных к проведению 28 425 контрольно-профилактических проверок службами производственного контроля (в 2014 г. — 32 028) фактически проведено 28 067 проверок (в 2014 г. — 31 264), что составляет 98 % от годового плана (в 2014 г. — 98 %).

Наиболее характерными нарушениями в части организации и осуществления производственного контроля являются:

нарушение сроков проведения проверок;
отсутствие контроля за своевременным устранением выявленных нарушений;
отсутствие контроля за своевременным проведением экспертизы промышленной безопасности технических устройств, зданий, сооружений.

Обязательное страхование гражданской ответственности за причинение вреда в результате аварии или инцидента на опасном производственном объекте осуществляется организациями, эксплуатирующими опасные производственные объекты, в соответствии с законодательством Российской Федерации об обязательном страховании гражданской ответственности владельца опасного объекта за причинение

© Оформление. ЗАО НТЦ ПБ, 2016
вреда в результате аварии на опасном объекте. Всеми 41 476 организациями, эксплуатирующими опасные производственные объекты, заключены договоры страхования гражданской ответственности за причинение вреда в результате аварии или инцидента на опасном производственном объекте.

Повышение промышленной безопасности на опасных производственных объектах достигается эксплуатирующими организациями при реализации планов модернизации, включающих работы по реконструкции действующих и строительству новых объектов газораспределения и газопотребления, а также продлением срока безопасной эксплуатации объектов.

В состав сетей газораспределения и газопотребления входят наружные газопроводы общей протяженностью 852,9 тыс. км, в том числе полиэтиленовые газопроводы 209,7 тыс. км. Из них газопроводы, отслужившие нормативный срок службы, составляют 57,8 тыс. км (7 %), прошедшие техническое диагностирование с продлением срока безопасной эксплуатации — 49,1 тыс. км (85 %), подлежащие замене (перекладке) — 4,2 тыс. км (7 %). Заменены, в том числе реконструированы с применением полимеров 3,9 тыс. км (93 %). Из 270 237 газорегуляторных пунктов 26 742 (10 %) находятся в эксплуатации более 20 лет, из них техническое диагностирование с продлением срока безопасной эксплуатации прошли 21 190 (79 %).

В целях реализации федеральных норм и правил в области промышленной безопасности разработано Руководство по безопасности «Методические рекомендации по разработке обоснования безопасности опасных производственных объектов нефтегазового комплекса», утвержденное приказом Ростехнадзора от 30 сентября 2015 г. № 387.

2.2.14. Взрыво-пожароопасные и химически опасные производства и объекты

2.2.14.1. Предприятия химического комплекса

В 2015 г. территориальными органами Ростехнадзора осуществлялся надзор и контроль на более чем 3000 предприятиях химического комплекса.

К производствам основных химических веществ относятся:
- производство удобрений и азотных соединений;
- производство основных органических химических веществ;
- производство синтетического каучука;
- производство пластмасс и синтетических смол в первичных формах.

К числу химически опасных поднадзорных производств и объектов относятся:
- объекты, связанные с производством или использованием сжиженного аммиака, других хладагентов и криопродуктов;
- объекты, связанные с производством хлора, хлорсодержащих веществ;
- объекты, связанные с производством и использованием концентрированных кислот и щелочей, а также объекты по производству минеральных удобрений, на которых сосредоточены в изотермических резервуарах постоянные запасы сжиженного аммиака от 10 до 30 тыс. т и более;
- водоочистные сооружения городов, на которых содержатся до сотен тонн сжиженного хлора;
- объекты малотоннажной химии.

В 2015 г. по сравнению с 2014 г. число поднадзорных предприятий химического комплекса, осуществляющих деятельность в области промышленной безопасности, составило 4527 (в 2014 г. — 4800), из них 3236 (в 2014 г. — 3474) — организа-

Число организаций, эксплуатирующих химически опасные производственные объекты, отнесенных к группам опасности, соответственно составляет:

1-я группа (предприятия и организации основного химического профиля, а также другие опасные производственные объекты, подлежащие декларированию) — 204 (278) организации, аварии на которых влекут широкое поражение окружающих территорий и наземных объектов.

2-я группа (предприятия и организации, не относящиеся к 1-й группе, но имеющие в своем составе объекты, на которых при аварии возможно распространение отдельных поражающих факторов за границы химически опасного производственного объекта) — 1146 (в 2014 г. — 1377) организаций;

3-я группа (предприятия и организации, имеющие в своем составе химически опасные производственные объекты, не относящиеся к двум первым) — 1616 (в 2014 г. — 1612) организаций.

При этом согласно отчетным данным за 2015 г. уменьшилось количество организаций (юридических лиц), осуществляющих эксплуатацию ХОПО, с 3474 до 3236, что связано в основном с проведением поднадзорными организациями переидентификации объектов, в том числе с учетом количества обращающихся опасных веществ на единой площадке конкретного производства.

Государственный надзор за состоянием промышленной безопасности химически опасных производственных объектов, в том числе крупных химических комплексов (технологические объекты по получению неорганических веществ и продуктов на основе аммиака, минеральных удобрений), и их безопасной эксплуатацией проводился в направлении активизации работ по совершенствованию нормативно-технических основ и обеспечении комплексного развития технико-экономической базы предприятий (с приоритетом позиций промышленной безопасности), а также хода реализации комплексных инвестиционных программ по техническому перевооружению и модернизации действующих и созданию новых экономически эффективных и экологически безопасных производств, в том числе в рамках политики импортозамещения.

С учетом проведенной реконструкции и модернизации химически опасных производственных объектов предприятий химического комплекса можно сделать вы-
вод, что техническое состояние объектов оптимизируется. Вместе с тем вопросы реконструкции все еще сдерживаются из-за недостатка финансирования, особенно в части реконструкции инфраструктурных мощностей.

Состояние промышленной безопасности на поднадзорных химических предприятиях в течение 2015 г. оценивается как стабильное, крупных техногенных аварий не зарегистрировано, террористические акты также не зафиксированы, но допущен общий рост аварийности и смертельного травматизма.

В 2015 г. на предприятиях произошло 11 аварий и 12 несчастных случаев со смертельным исходом (в 2014 г. произошло 3 аварии и 2 несчастных случая со смертельным исходом).

Аварии были допущены на опасных производственных объектах организаций, поднадзорных Уральскому управлению (2), Волжско-Окскому управлению (2), Западно-Уральскому управлению (2), Центральному управлению (1), Северо-Западному управлению (1), Енисейскому управлению (1), Межрегиональному технологическому управлению (1), Нижне-Волжскому управлению (1).

Несчастные случаи со смертельным исходом были допущены на опасных производственных объектах организаций, поднадзорных Нижне-Волжскому управлению (4), Уральскому управлению (3), Центральному управлению (3), Сибирскому управлению (1), Енисейскому управлению (1).

Групповые несчастные случаи имели место в ОАО «Акрон» (г. Великий Новгород), поднадзорном Северо-Западному управлению, ОАО «ТД Преображенский» (г. Москва), поднадзорном Межрегиональному технологическому управлению Ростехнадзора, ООО «Тало ПолимерКирово-Чепецк» (г. Кирово-Чепецк, Кировская область), поднадзорном Западно-Уральскому управлению, и ОАО «Гусевский стекольный завод» (Владимирская область), поднадзорном Центральному управлению.

Прошедшие в 2015 г. аварии и несчастные случаи со смертельным исходом зарегистрированы в том числе на объектах I класса опасности (5 аварий, 3 смертельных случая), в отношении которых осуществляется постоянный государственный контроль, а также на объектах III класса опасности (4 аварии, 8 смертельных случаев), в отношении которых плановые проверки проводятся один раз в течение трех лет.

Наметилась тенденция по увеличению количества аварий по виду — взрыв, выброс опасных веществ (табл. 83).

<p>| Таблица 83 |</p>
<table>
<thead>
<tr>
<th>Распределения аварий по видам аварий в 2015 и 2014 гг.</th>
<th>2015 г.</th>
<th>2014 г.</th>
<th>+/—</th>
</tr>
</thead>
<tbody>
<tr>
<td>Взрыв</td>
<td>5</td>
<td>—</td>
<td>+5</td>
</tr>
<tr>
<td>Пожар</td>
<td>—</td>
<td>1</td>
<td>—1</td>
</tr>
<tr>
<td>Выброс опасных веществ</td>
<td>5</td>
<td>1</td>
<td>+4</td>
</tr>
<tr>
<td>Разгерметизация оборудования</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Итого:</td>
<td>11</td>
<td>3</td>
<td>+8</td>
</tr>
</tbody>
</table>

Зафиксирован рост числа несчастных случаев по травмирующим факторам — разрушение технических устройств, термический и химический ожоги (табл. 84).
Таблица 84

Распределения несчастных случаев со смертельным исходом по травмирующим факторам в 2014 и 2015 гг.

<table>
<thead>
<tr>
<th>Фактор</th>
<th>2015 г.</th>
<th>2014 г.</th>
<th>+/–</th>
</tr>
</thead>
<tbody>
<tr>
<td>Термический ожог</td>
<td>1</td>
<td>—</td>
<td>+1</td>
</tr>
<tr>
<td>Химический ожог</td>
<td>2</td>
<td>—</td>
<td>+2</td>
</tr>
<tr>
<td>Отравление</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Разрушенные технические устройства</td>
<td>9</td>
<td>2</td>
<td>+7</td>
</tr>
<tr>
<td>Падение с высоты</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Итого</td>
<td>12</td>
<td>2</td>
<td>+10</td>
</tr>
</tbody>
</table>

Таблица 85

Анализ обобщенных причин аварий, %

<table>
<thead>
<tr>
<th>Причина</th>
<th>2015 г.</th>
<th>2014 г.</th>
<th>Динамика</th>
</tr>
</thead>
<tbody>
<tr>
<td>Технические причины</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Неудовлетворительное техническое состояние оборудования</td>
<td>40</td>
<td>33,5</td>
<td>+6,5</td>
</tr>
<tr>
<td>Неисправность (отсутствие) средств ПАЗ, сигнализации</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Несовершенство технологии или конструктивные недостатки</td>
<td>30</td>
<td>16,6</td>
<td>+13,4</td>
</tr>
<tr>
<td>Отступление от требований проектной, технологической документации</td>
<td>—</td>
<td>49,5</td>
<td>–49,5</td>
</tr>
<tr>
<td>Нарушение регламента ревизии или обслуживания технических устройств</td>
<td>10</td>
<td>—</td>
<td>+10</td>
</tr>
<tr>
<td>Нарушение регламента ремонтных работ или их качество</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Наличие скрытых дефектов или неэффективность входного контроля</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Использование в технических устройствах конструкционных материалов или частей, не соответствующих проекту</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Несоответствие проектных решений условиям производства и обеспечения безопасности</td>
<td>20</td>
<td>—</td>
<td>+20</td>
</tr>
<tr>
<td>Отсутствие автоматизации опасных операций, механизации работ</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Организационные причины</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Неправильная организация производства работ</td>
<td>18,2</td>
<td>40,0</td>
<td>–21,8</td>
</tr>
<tr>
<td>Неэффективность производственного контроля</td>
<td>72,7</td>
<td>6,8</td>
<td>+65,9</td>
</tr>
<tr>
<td>Нарушение технологической и трудовой дисциплины</td>
<td>—</td>
<td>53,2</td>
<td>–53,2</td>
</tr>
<tr>
<td>Низкий уровень знаний требований промышленной безопасности</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Неосторожные или несанкционированные действия исполнителей работ</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Прочие причины</td>
<td>9,1</td>
<td>—</td>
<td>+9,1</td>
</tr>
</tbody>
</table>
Таблица 86

Анализ обобщенных причин несчастных случаев

<table>
<thead>
<tr>
<th>X</th>
<th>2015</th>
<th>2014</th>
<th>Динамика</th>
</tr>
</thead>
<tbody>
<tr>
<td>Технические причины</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Недовлетворительное техническое состояние оборудования</td>
<td>14,3</td>
<td>—</td>
<td>+14,3</td>
</tr>
<tr>
<td>Неисправность (отсутствие) средств ПЛАЗ, сигнализации</td>
<td>—</td>
<td>50</td>
<td>—50</td>
</tr>
<tr>
<td>Несовершенство технологии или конструктивные недостатки</td>
<td>57,1</td>
<td>—</td>
<td>+57,1</td>
</tr>
<tr>
<td>Отступление от требований проектной, технологической документации</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Отсутствие автоматизации опасных операций, механизации работ</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Несоответствие проектных решений условиям производства и обеспечения безопасности</td>
<td>14,3</td>
<td>—</td>
<td>+14,3</td>
</tr>
<tr>
<td>Нарушение регламента ревизии или обслуживания технических устройств</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Нарушение регламента ремонтных работ или их качество</td>
<td>14,3</td>
<td>—</td>
<td>+14,3</td>
</tr>
<tr>
<td>Наличие скрытых дефектов или неэффективность входного контроля</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Использование в технических устройствах материалов/частей, не соответствие проекту</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Организационные причины</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Неправильная организация производства работ</td>
<td>37,5</td>
<td>50,0</td>
<td>—12,5</td>
</tr>
<tr>
<td>Неэффективность производственного контроля</td>
<td>50,0</td>
<td>7,8</td>
<td>+42,2</td>
</tr>
<tr>
<td>Нарушение технологической дисциплины</td>
<td>—</td>
<td>42,2</td>
<td>—42,2</td>
</tr>
<tr>
<td>Низкий уровень знаний требований промышленной безопасности</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Неосторожные или несанкционированные действия исполнителей работ</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Прочие причины</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Умышленная порча технических устройств с целью хищения</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Алкогольное опьянение исполнителей работ</td>
<td>12,5</td>
<td>—</td>
<td>+12,5</td>
</tr>
<tr>
<td>Внешнее воздействие</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Стихийные явления природного происхождения</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Таблица 87

Динамика аварийности и травматизма

	Количество аварий и смертельных случаев по годам					
Аварии	12	8	6	2	3	11
Смертельные случаи	7	3	7	5	2	12
В 2015 г. на объектах химического профиля зафиксировано 94 инцидента. Основные причины произошедших инцидентов связаны с отказом или повреждением технических устройств (66 инцидентов) и отклонениями от нормального режима при ведении технологических процессов (28 инцидентов). На данные обстоятельства влияют значительный износ оборудования и недостаточный контроль со стороны персонала за его состоянием в процессе эксплуатации и в периоды ремонтов (текущих или капитальных).

На общий уровень производственного травматизма и аварийности на предприятиях химического комплекса, состояние основных фондов (износ до 80 %), определяющих потенциальную опасность химико-технологических объектов, негативно влияет уровень состояния промышленной безопасности химически опасных производственных объектов.

Основным элементом в обеспечении предупреждения аварий и травматизма является производственный контроль, влияющий на уровень промышленной безопасности организаций. Эффективность системы производственного контроля оценивается состоянием промышленной безопасности организации.

Вместе с тем в условиях функционирования ОПО с малой численностью обслуживающего персонала в организациях, имеющих небольшой общий штат работников, работа по осуществлению производственного контроля не в полной мере соответствует требованиям промышленной безопасности. Организация работы на данных ОПО требует дальнейшего совершенствования, в том числе в плане методического обеспечения.

В целом анализ результатов контрольной и надзорной работы, в том числе анализ аварий и травматизма, позволяет сделать выводы о низкой эффективности производственного контроля и низкой квалификации руководителей и специалистов в отдельных организациях, эксплуатирующих ОПО, особенно в организациях, допустивших аварии.

Ответственными за организацию производственного контроля на предприятиях, имеющих небольшой общий штат работников, по осуществлению производственного контроля не в полной мере соответствует требованиям промышленной безопасности. Организация работы на данных ОПО требует дальнейшего совершенствования, в том числе в плане методического обеспечения.

Наиболее характерными нарушениями при организации производственного контроля является отсутствие оценки и анализа при проведении комплексных проверок, результаты проверок не доводятся до должностных лиц организаций, не всегда своевременно и качественно проводятся идентификация и расследования причин происшедших инцидентов.

В 2015 г. в организациях, эксплуатирующих опасные производственные объекты I или II класса опасности, продолжались работы по совершенствованию функционирования систем управления промышленной безопасностью, в части повышения их эффективности при эксплуатации крупных опасных производств.

Подконтрольные организации, эксплуатирующие опасные производственные объекты, заключили договоры обязательного страхования гражданской ответственности владельца опасного объекта за причинение вреда в результате аварии на опасном объекте.

Вместе с тем на основании анализа результатов проведенной территориальными органами надзорной работы установлено, что на поднадзорных объектах не проис-
годовой отчет о деятельности Федеральной службы
ходит требуемого внедрения новых, высокоэффективных и безопасных технологий, все еще медленно происходит замена технических устройств (оборудования, средств контроля и автоматики, противоаварийной защиты, электрооборудования и других), отработавших нормативный срок службы, на новые и более эффективные (в большинстве случаев по результатам проведенных экспертиз промышленной безопасности принимаются решения о продлении сроков эксплуатации).

По информации территориальных органов Ростехнадзора в 2015 г. химически опасные объекты в основном в достаточной мере защищены, их охрану и оборону осуществляют как подразделения МВД России, так и специализированные охранные организации.

На химически опасных объектах разрабатываются меры по противодействию террористическим проявлениям и защите объектов, по предотвращению постороннего несанкционированного вмешательства в ход технологических процессов, ужесточен пропускной режим, запрещен пронос подозрительных и объемных предметов.

В 2015 г. территориальные органы Ростехнадзора провели 4602 (в 2014 г. — 3807) обследования предприятий химического комплекса, по результатам которых выдано 17 481 (в 2014 г. — 15528) предписание к устранению нарушений требований промышленной безопасности. За нарушение законодательства, требований нормативных документов промышленной безопасности, обеспечивающих промышленную безопасность, назначено административных наказаний 1664 (в 2014 г. — 1407).

Общая сумма наложенных штрафов составила 112 млн 859 тыс. руб. (в 2014 г. — 77 млн 263 тыс. руб.).

Отмечается рост проведенных обследований, количества выявленных нарушений, а также общей суммы наложенных штрафов.

При этом анализ выявленных нарушений показывает, что их большая часть связана с технической безопасностью.

В 2015 г. территориальными управлениями Ростехнадзора не применялся такой вид административного наказания, как дисциплинация.

При этом административное приостановление деятельности не использовали Нижне-Волжское и Центральное управления, на поднадзорных объектах которых зарегистрированы аварии с тяжелыми последствиями и групповые несчастные случаи со смертельным исходом.

В целях реализации изменений, внесенных в законодательные акты о промышленной безопасности Ростехнадзора в декабре 2015 г. проведен семинар с инспекторским составом территориальных органов Ростехнадзора, на котором был рассмотрен вопрос о результатах осуществляемых органами Ростехнадзора контрольно-надзорных мероприятий и нормативного регулирования безопасности объектов химического комплекса.

В 2015 г. продолжалась работа по совершенствованию нормативного правового регулирования в области промышленной безопасности на предприятиях химического комплекса.

В рамках нормотворческой деятельности в мае 2015 г. в Минюсте России зарегистрированы Федеральные нормы и правила в области промышленной безопасности «Требования к технологическим регламентам химико-технологических производств» (№ 374263 от 28 мая 2015 г.).

Согласно отчетам территориальных органов Ростехнадзора декларирование опасных производственных объектов в 2015 г. проходило удовлетворительно и свя-
зано было в основном с пересмотром деклараций промышленной безопасности на предприятиях химического комплекса, в том числе по результатам перерегистрации опасных производственных объектов, а также выполнением организациями химического комплекса мероприятий, указанных в декларациях безопасности, направленных на повышение уровня промышленной безопасности опасных производственных объектов.

В 2015 г. на объектах химического комплекса разработано (пересмотрено) более 30 деклараций промышленной безопасности, которые занесены в реестр деклараций опасных производственных объектов в установленном порядке.

Поднадзорные предприятия химического профиля в зависимости от классов опасности эксплуатируемых химически опасных производственных объектов имеют собственные газоспасательные формирования или заключают договоры на обслуживание. Крупные организации (объекты I и II классов опасности), как правило, имеют штатные формирования газоспасателей, которые оснащены специальной техникой, оборудованием, снаряжением, инструментом и материалами.

В структурных подразделениях предприятий химического комплекса из числа их работников создаются нештатные аварийно-спасательные формирования (НАСФ), которые могут участвовать в ликвидации аварийных ситуаций в соответствии с ПЛА.

Для приобретения практических навыков безопасного выполнения работ, предупреждения аварий и ликвидации их последствий на предприятиях рабочие и инженерно-технические работники, непосредственно занятые ведением технологического процесса и эксплуатацией оборудования на этих объектах, проходят обучение и отработку практических навыков для освоения технологического процесса и системы управления, пуска, плановой и аварийной остановки в типовых и специфических нештатных и аварийных ситуациях.

В 2015 г. учебно-тренировочные занятия (тренировки) с производственным персоналом проводились ежемесячно по годовому графику, утверждаемому руководством организаций, эксплуатирующих химически опасные производственные объекты.

Процедура лицензирования опасных производственных объектов позволяет реально влиять на состояние их промышленной безопасности и дает возможность не допустить к деятельности на опасном производственном объекте профессионально неподготовленные организации. В целом практика лицензирования показывает, что наличие лицензий дисциплинирует организации, повышает персональную ответственность руководителей организаций в решении технических вопросов, направленных на модернизацию оборудования и технологических процессов.

В 2015 г. территориальными органами Ростехнадзора предоставлена 91 лицензия на эксплуатацию взрывопожароопасных и химически опасных производственных объектов I, II, III классов опасности, переоформлено 308 лицензий на эксплуатацию взрывопожароопасных и химически опасных производственных объектов химического комплекса, отказано в предоставлении лицензий 76 организациям, эксплуатирующим взрывопожароопасные и химически опасные производственные объекты. (расположены на территориях, входящих в сферу деятельности Северо-Западного, Северо-Кавказского, Центрального, Северо-Уральского, Уральского управлений Ростехнадзора).

В 2015 г. процедуры приостановления действия лицензий на эксплуатацию взрывоопасных и химически опасных производственных объектов химического комплекса территориальными органами Ростехнадзора не осуществлялись.
Основными направлениями работы по совершенствованию надзора на предприятиях химического комплекса являются повышение уровня промышленной безопасности на химически опасных производственных объектах, снижение степени риска возникновения аварийных ситуаций за счет:

совершенствования надзорной, контрольной и разрешительной деятельности с сочетанием статистического и аналитического подходов и качественными оценками результативности (приоритетно в части объектов I и II классов опасности крупных химических компаний);

повышения эффективности воздействия территориальных органов на службы производственного контроля и системы управления промышленной безопасностью на подконтрольных предприятиях химического комплекса;

контроля за ходом выполнения инвестиционных программ по модернизации и (или) реконструкции объектов, разработанных с учетом вопросов безопасности;

исключения зависимости предприятий химического комплекса от импортного сырья, за счет импортозамещения по сырью, химреагентам готовой продукции, включая машино-, приборостроение, системы управления и контроля на современной электронно-цифровой элементной базе;

перехода на риск-ориентиры в отношении химически опасных производственных объектов ввиду высокого уровня износа производственных мощностей; с учетом развития и регулирования нормативного блока в области промышленной безопасности, совершенствования контроля безопасности производств;

осуществления дистанционного контроля за химически опасными производственными объектами, в том числе при помощи мониторинга состояния контролируемых опасных параметров в режиме реального времени, с возможным их обобщением, актуализацией и передачей соответствующей информации в интегрированные программные продукты блоков действующих (разработанных) СУПБ;

расширения опыта научного подхода к проблемам промышленной безопасности химически опасных производственных объектов, в части организации по расчету и анализу степени риска;

повышения безопасности при процессах консервации, ликвидации крупных бесперспективных производств, содержащих опасные вещества.

2.2.14.2. Предприятия оборонно-промышленного комплекса

К поднадзорным опасным производственным объектам предприятий оборонно-промышленного комплекса относятся объекты:

безопасного хранения и уничтожения химического оружия;

производства взрывчатых веществ, порохов, ракетных топлив и изделий, их содержащих;

снаряжения и утилизации боеприпасов, ракет и их составных частей;

ракетно-космической деятельности.

Общее число опасных производственных объектов предприятий оборонно-промышленного комплекса, эксплуатирующих опасные производственные объекты, составляет более 500, основная часть которых относится к ведению Минпромторга России, Минобороны России, Федеральной корпорации «Ростех», Государственной корпорации «Росатом», Государственной корпорации «Роскосмос».

В 2015 г. на опасных производственных объектах оборонно-промышленного комплекса было зарегистрировано 4 аварии и 5 несчастных случаев со смертельным исходом (табл. 88–90).
Таблица 88
Распределение аварий по объектам в 2014 и 2015 гг.

<table>
<thead>
<tr>
<th>Объекты</th>
<th>2014 г.</th>
<th>2015 г.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Уничтожение химического оружия</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Оборонно-промышленный комплекс</td>
<td>6</td>
<td>4</td>
</tr>
</tbody>
</table>

Таблица 89
Распределение травматизма со смертельным исходом по объектам в 2014 и 2015 гг.

<table>
<thead>
<tr>
<th>Объекты</th>
<th>2014 г.</th>
<th>2015 г.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Уничтожение химического оружия</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Оборонно-промышленный комплекс</td>
<td>6</td>
<td>5</td>
</tr>
</tbody>
</table>

Таблица 90
Распределение аварий и несчастных случаев со смертельным исходом в 2014 и 2015 гг. (по территориальным управлениям Ростехнадзора)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Центральное</td>
<td>—</td>
<td>1</td>
<td>1</td>
<td>—</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Волжско-Окское</td>
<td>—</td>
<td>3</td>
<td>1</td>
<td>—</td>
<td>1</td>
<td>—</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Приволжское</td>
<td>—</td>
<td>3</td>
<td>1</td>
<td>—</td>
<td>1</td>
<td>—</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Верхне-Донское</td>
<td>—</td>
<td>3</td>
<td>1</td>
<td>—</td>
<td>1</td>
<td>—</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Сибирское</td>
<td>—</td>
<td>3</td>
<td>1</td>
<td>—</td>
<td>1</td>
<td>—</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

30 января 2015 г. в акционерном обществе «Муромский прибороростроительный завод», подведомственном ГК «Ростех», произошла авария и несчастный случай со смертельным исходом в опытном промышленном производстве (цех производства химических составов и пиротехнических средств).

5 июня 2015 г. в ОАО «Краснозаводский химический завод» (Московская область) в производственном помещении произошел групповой несчастный случай, в результате которого погибло 2 человека и один получил термическую травму.

4 июня 2015 г. на ФКП «Казанский государственный казенный пороховой завод» (г. Казань, поднадзорно Приволжскому управлению) произошла авария.

При запуске технологического процесса производства нитратов целлюлозы в промежуточной емкости была обнаружена течь в патрубке подачи суспензии в насос перекачки. Для проведения внепланового ремонта с целью устранения негерметичности была организована чистка промежуточной емкости. После выгрузки продукции аппаратчица приступила к промывке емкости водой без предварительного смывания остатков продукта кислотной смесью, в результате чего произошло разложение остатков нестойкого нитрата целлюлозы с выделением диоксида азота в атмосферный воздух.

29 сентября 2015 г. в ОАО «Новосибирский механический завод «Искра» (г. Новосибирск) произошла авария (взрыв).

При проведении операции по изготовлению изделия 70Э-12 методом экструзии в автоматическом режиме при формировании первой бухты произошел взрыв продукта 77 (ТЭН — тетранитропентаэритрит), в результате которого уничтожен продукт, находящийся в воронке, уничтожено изделие в приемном контейнере, разрушены вышибные поверхности, повреждена технологическая оснастка. Пострадавших нет.
Следует отметить, что подобная авария на данном предприятии произошла в третьий раз, при этом рекомендации комиссий по расследованию причин аварий, такие, как снижение температуры полиэтилена, установка аппаратуры видеофиксации в бронекабинах, улучшение входного контроля продукта ТЭН, предприятием не выполнены.

Экономический ущерб от аварии составил 165,2 тыс. руб.

30 сентября 2015 г. в цехе № 5 основного производства ФКП «Тамбовский пороховой завод» в здании № 144 сушики порохов произошли возгорание и взрыв пороховой массы. В результате пострадало 5 работников предприятия, из них двое травмированы смертельно, два человека получили травмы тяжелой степени, один — легкой, здание разрушено полностью.

Комиссией по расследованию причин аварии определены организационные причины аварии и группового несчастного случая:

личная недисциплинированность персонала (один из погибших сотрудников находился вне своего рабочего места, в его организме при проведении судебно-медицинской экспертизы обнаружен алкоголь 2,0 промилле);

низкая производственная дисциплина и отсутствие контроля за персоналом со стороны руководящего состава предприятия;

неэффективный контроль службы спецрежима за допуском работников на взрывопожароопасный объект.

Обстоятельства аварий и несчастных случаев, произошедших на объектах оборонно-промышленного комплекса, свидетельствуют, что к основным причинам аварийности и травматизма относятся системные нарушения режимов ведения технологических процессов, недостаточность производственного контроля при эксплуатации опасных производственных объектов, несоблюдение нормативных требований по безопасности и производственной документации (проектная документация, технологические регламенты и схемы, производственные инструкции, нормы безопасности) как руководящим составом предприятий, так и должностными лицами, ответственными за осуществление производственного контроля и безопасное ведение работ.

Вместе с тем производственный контроль, так же как и функционирование систем управления промышленной безопасностью на объектах предприятий, зачастую осуществляется формально без исключения очевидных предпосылок возникновения аварийных ситуаций, при этом системы управления промышленной безопасностью предприятий не в полной мере обеспечивают требуемый уровень безопасности.

Регулярно фиксируется снижение уровня квалификации, опыта профессиональной подготовки обслуживающего сооружения и технические устройства и ведущего работы персонала и технического руководства организаций.

Ослаблен контроль за исполнением работ субподрядными и привлекаемыми организациями, в том числе за подготовкой, квалификацией и допуском персонала и его техническим оснащением.

В 2015 г. территориальные управления Ростехнадзора принимали участие в совместных проверках, организованных органами Генеральной прокуратуры Российской Федерации и ФСБ России, как действующих объектов, связанных с обращением токсичных и взрывчатых веществ, так и выбывших из эксплуатации.
В 2015 г. территориальными органами Ростехнадзора осуществлялся контроль выполнения утвержденных и согласованных планов мероприятий по локализации и ликвидации аварий на поднадзорных объектах.

При проведении учебных тревог в ходе проверок на опасных производственных объектах инспекторским составом фиксировались недостаточный уровень слаженности аварийных и диспетчерских служб, слабое знание персоналом должностных инструкций, что является предпосылкой к росту травматизма.

Увеличение объемов выпуска оборонной продукции (в рамках задач гособоронзаказа) влечет за собой увеличение рисков, связанных с безопасной эксплуатацией изношенного оборудования, зданий и сооружений, включая недостаток квалифицированных кадров и вовлечение в активный производственный цикл приостановленных (в части эксплуатации) и (или) консервированных производственных мощностей, не всегда находящихся в надлежащем техническом состоянии, что также приводит к росту аварийности и травматизма.

В рамках реализации федеральной целевой программы «Уничтожение запасов химического оружия в Российской Федерации» в 2015 г. центральный аппарат Ростехнадзора обеспечивал организационно-методическое руководство контрольно-надзорными мероприятиями, проводимыми территориальными управлениями Ростехнадзора по месту нахождения объектов по хранению и уничтожению химического оружия в г. Щучье Курганской области (поднадзорно Уральскому управлению Ростехнадзора), г. Почеп Брянской области (поднадзорно Приокскому управлению Ростехнадзора), пос. Марадыковский Кировской области и пос. Кизнер Удмуртской Республики (поднадзорно Западно-Уральскому управлению Ростехнадзора), пос. Леонидовка Пензенской области (поднадзорно Нижне-Волжскому управлению Ростехнадзора).

На четырех объектах по уничтожению химического оружия в 2015 г. завершено уничтожение запасов химического оружия:
объект «Леонидовка» — 22 сентября 2015 г.;
obъект «Почеп» — 8 октября 2015 г.;
obъект «Марадыковский» — 30 октября 2015 г.;
obъект «Щучье» — 20 ноября 2015 г.

По состоянию на 31 декабря 2015 г. всего уничтожено 36 755,51 т отравляющих веществ, что составляет 92 % общего запаса отравляющих веществ Российской Федерации, аварий в течение последних 10–12 лет не зарегистрировано.

К концу 2015 г. химическое оружие уничтожено на шести объектах. Остается один объект, на котором продолжается уничтожение химоружия — объект «Кизнер» в Удмуртской Республике.

На указанных объектах осуществляется контроль за безопасной эксплуатацией зданий и сооружений, консервацией технологического оборудования, продолжается надзор за объектами инфраструктуры.

В течение 2015 г. территориальными управлениями Ростехнадзора проводились плановые проверки состояния безопасности в отношении объектов химического разоружения, информация по которым представлена в табл. 91.
Проведение плановых проверок состояния безопасности в отношении объектов химического разоружения

<table>
<thead>
<tr>
<th>Объект УХО</th>
<th>Количество проведенных проверок</th>
<th>Количество выявленных нарушений промышленной безопасности</th>
<th>Количество выявленных нарушений правил промышленной безопасности РФ</th>
<th>Количество выявленных нарушений требований Градостроительного кодекса РФ</th>
<th>Количество выданных выписок из надзорных дел, актов, предписаний</th>
</tr>
</thead>
<tbody>
<tr>
<td>Леонидовка</td>
<td>12</td>
<td>4</td>
<td>—</td>
<td>—</td>
<td>4 (1 представл.)</td>
</tr>
<tr>
<td>Почеп</td>
<td>3 — требований промышленной безопасности</td>
<td>27</td>
<td>36</td>
<td>—</td>
<td>4 — требований промышленной безопасности</td>
</tr>
<tr>
<td>Мара́дьков-ский</td>
<td>3</td>
<td>—</td>
<td>8</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Камбарка</td>
<td>1 (внеплановая проверка)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Кизнер</td>
<td>4</td>
<td>—</td>
<td>17</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Щучье</td>
<td>3</td>
<td>—</td>
<td>1</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Итого:</td>
<td>28</td>
<td>4</td>
<td>86</td>
<td>36</td>
<td>15</td>
</tr>
</tbody>
</table>

На объектах по хранению и уничтожению химического оружия выполняются мероприятия по антитеррористической защищенности объектов. Объекты оснащены техническими средствами охраны, системами громкой связи и аварийного оповещения, находятся под круглосуточным видеонаблюдением, системы обеспечения охраны и контрольно-пропускного режима соответствуют нормативным документам и находятся в исправном состоянии. Случаев несанкционированного проникновения на объекты не зафиксировано.

Регулярно в соответствии с утвержденными планами мероприятий по локализации и ликвидации возможных аварий на объектах по утвержденным графикам проводятся противоаварийные тренировки с обслуживающим персоналом, в том числе с профессиональными штатными газоспасательными и аварийными службами.

С учетом безаварийной эксплуатации объектов по хранению и уничтожению химического оружия опыт и практика организации работ в области промышленной безопасности Федерального управления по безопасному хранению и уничтожению химического оружия целесообразно использовать и на других критически опасных производствах и объектах оборонно-промышленного и химического комплексов.
2.2.15. Производство, хранение и применение взрывчатых материалов промышленного назначения

В 2015 г. деятельность в области взрывчатых материалов промышленного назначения (ВМ) осуществляли 1127 организаций. Под надзором состояло 877 опасных производственных объектов. Количество работников, имеющих допуск к обращению с ВМ (количество работников в отрасли), — 42,6 тыс. чел.

Количество взрывчатых веществ (ВВ), израсходованных организациями, ведущими взрывные работы, по сравнению с предыдущим годом снизилось на 4 % и составило 1,47 млн т. Из общего объема израсходованных взрывчатых материалов 85 % было изготовлено вблизи мест применения (1,25 млн т). При этом 65 % изготовленных взрывчатых веществ (0,83 млн т) составили наиболее безопасные эмульсионные ВВ.

Динамика объемов производства и потребления взрывчатых веществ в Российской Федерации показана на рис. 17.

В 2015 г. выявлено 9 случаев утрат ВМ, из них 5 случаев хищений (в 2014 г. — 6 утрат и 3 хищения). Всего утрачено 142, 25 кг ВВ и 71 электродetonатор, в том числе 42,25 кг ВВ и 25 электродetonаторов в результате хищений и разбрасываний и 100 кг ВВ и 46 электродetonаторов в результате потери. В 2014 г. количество похищенных и разбросанных ВМ составляло 6,75 кг взрывчатых веществ, утерянных — 1596 кг.

Утраты допущены в организациях, поднадзорных Северо-Уральскому, Забайкальскому управлением (по 2 случая утрат), Уральскому, Западно-Уральскому, Дальневосточному, Ленскому и Межрегиональному технологическому управлением (по одному случаю утраты).

Информация об утращах и хищениях представлена на рис. 18.
Основные причины, приведшие к утратам ВМ:
нарушение установленного порядка учета взрывчатых материалов на подземных складах ВМ;
выдача немаркированных электродетонаторов;
нарушение производственной дисциплины, в том числе умышленное хищение ВМ с подземных складов.

25 января 2015 г. при попытке реализации взрывчатых материалов был задержан сотрудниками Управления МВД по Забайкальскому краю раздатчик ВМ в ООО «Торговый дом Гарсонуйский ГОК» (поднадзорно Забайкальскому управлению), который, пользуясь служебным положением, совершил в январе 2013 г. хищение ВМ (6 патронов аммонита № 6ЖВ, 5 электродетонаторов);

18 мая 2015 г. сотрудниками Оймяконского отдела МВД России по Республике Саха (Якутия) в ходе проведения оперативно-розыскных мероприятий были обнаружены и изъяты ВМ: 4 патрона аммонита № 6ЖВ и один электродетонатор ЭД-8. В ходе расследования установлено, что ВМ похищены с подземного склада рудника «Сарылах» ОАО «Сарылах-Сурьма» (поднадзорно Ленскому управлению) персоналом организации при непосредственном участии заведующего складом ВМ и горного мастера;
нарушение требований промышленной безопасности по обеспечению охраны и сохранности ВМ на местах работ, отсутствие надзора за ВМ со стороны руководителей взрывных работ:

17 января 2015 г. в ОАО «Высокогорский ГОК», шахта Южная (поднадзорно Уральскому управлению), взрывник по окончании взрывных работ по разделке негабарита принес с собой остаток ВМ и оставил рядом с бытовым помещением. В результате неосторожного обращения с огнем произошли пожар и несанкционированный взрыв, которые привели к гибели троих работников шахты. Было утрачено 12 кг ВВ, 5 электродетонаторов и 50 м детонирующего шнура;

18 мая 2015 г. УМВД России по Амурской области у взрывника ООО «АВТ-Амур» (поднадзорно Забайкальскому управлению) были обнаружены семь патронов аммонита 6 ЖВ-200. В результате расследования установлено, что хищение совершено...

при проведении работ по заряжанию и установке наружных зарядов при производстве взрывных работ на территории ОПР «Пионер»;

2 октября 2015 г. в ПАО «Гайский ГОК» (поднадзорно Западно-Уральскому управлению) при проведении проверки состояния промышленной безопасности на подземном руднике, в слесарной мастерской участка №17 выявлено хранение ВМ в необорудованном месте (в ящике со слесарным инструментом);

10 ноября 2015 г. в ООО «Байкалруд» (поднадзорно Забайкальскому управлению) взрывник оставил выданные ему для производства взрывных работ ВМ без надзора (охраны) в месте, не предназначенном для хранения. В результате неизвестными лицами были похищены: аммонит № 6ЖВ — 38 кг, средства инициирования «Искра III» — 28 шт., детонирующий шнур ДШ — 20 м, электродетонаторы — 2 шт., взрывная машина КВП-2*200 — 1 шт.

В 2015 г. на объектах, связанных с обращением ВМ, произошло 3 аварии (в 2014 г. — 4) и 2 случая группового травматизма, погибло 6 человек (5 человек в 2014 г.). Суммарный ущерб от аварий составил 4,6 млн руб. Показатели аварийности и травматизма в отчетном периоде близки с аналогичными показателями за два предшествующих года. Динамика аварийности и травматизма за последнее десятилетие представлена на рис. 19.

По сравнению с 2014 г. изменилась ситуация с аварийностью и травматизмом по местам происшествия: увеличилось количество аварий и смертельных несчастных случаев на объектах проведения геофизических работ на 50 % и сократилось при ведении взрывных работ в подземных условиях на 40 % (табл. 92).
Таблица 92

Распределение аварийности и травматизма по местам происшествия

<table>
<thead>
<tr>
<th>Места несчастных случаев</th>
<th>Аварий</th>
<th>Погибших, чел.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Подземные работы</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Открытые работы</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Склады ВМ</td>
<td>1</td>
<td>—</td>
</tr>
<tr>
<td>Геофизика</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Итого:</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Основным травмирующим фактором явилось непосредственное воздействие ударной волны. С ним связаны все произошедшие несчастные случаи со смертельным исходом. Увеличилось общее количество пострадавших в результате аварий на 45 %, в том числе смертельно травмированных — на 20 % (табл. 93).

Таблица 93

Распределение несчастных случаев по травмирующим факторам

<table>
<thead>
<tr>
<th>Травмирующий фактор</th>
<th>Число погибших, чел.</th>
<th>Всего пострадавших при несчастных случаях</th>
</tr>
</thead>
<tbody>
<tr>
<td>Поражение осколками горной массы, обрушение пород</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Непосредственное воздействие ударной волны</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Отравления ядовитыми продуктами взрыва и рудничными газами</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Прочие причины</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Итого:</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

17 января 2015 г. произошла авария с групповым смертельным случаем на шахте «Южная» ОАО «Высокогорский ГОК» (поднадзорно Уральскому управлению). Звърывник по окончании взрывных работ по разделке негабарита принес остаток ВМ и оставил рядом с бытовым помещением. В результате неосторожного обращения с огнем произошел пожар и несанкционированный взрыв, которые привели к гибели троих работников шахты. Причинами аварии и группового несчастного случая явилось нарушение порядка обращения с ВМ, неудовлетворительная организация и осуществление производственного контроля за соблюдением технологической дисциплины работниками шахты.

Проведенный анализ показывает, что подавляющая доля причин аварий и несчастных случаев на производстве носит организационный характер (более 80 %). Основными причинами аварийности и травматизма являются системные нарушения требований безопасности, связанные в том числе с низкой производственной дисциплиной персонала, безответственностью руководителей предприятий различных уровней, неэффективностью производственного контроля.

В 2010–2015 гг. при выполнении прострелочно-взрывных работ и взрывных работ при сейсморазведке было допущено 7 аварий (54 % от общего числа произошедших). При авариях погибло 6 человек (25 % от общего числа погибших) и получили ранения различной степени тяжести 10 человек (67 % от общего числа травмирово-
ванных). На объектах, поднадзорных Северо-Уральскому управлению, произошли 6 аварий, Печорскому управлению, — 1 авария.

В актах проведенных расследований в числе основных причин аварий указывались воздействие высокочастотного излучения от антенн радиостанций на электродетонаторы и хранение электродетонаторов рядом с пунктом взрыва и радиостанцией.

2 мая 2012 г. в ЗАО «ПГО «Тюменьпромгеофизика» (Северо-Уральское управление) во время монтажа электровзрывной сети произошло несанкционированное инициирование электродетонаторов ЭДС-1. Несмотря на предписанные комиссией по расследованию меры по устранению причин, приведших к аварии, в последующие годы был допущен ряд аналогичных аварий, повлекших за собой травматизм работников, в том числе смертельный (27 марта 2013 г. в ООО «Юганскнефтегазгеофизика», 9 июля 2013 г. в ООО «Анега»).

17 мая 2015 г. в АО «Ямалпромгеофизика» (поднадзорно Северо-Уральскому управлению) при выполнении вертикального сейсмического профилирования (ВСП) на скважине произошло несанкционированное срабатывание электродетонатора, в результате чего 3 человека получили травмы. Одной из причин аварии вновь явилось воздействие источника высокочастотного излучения (радиостанции) на узел инициирования электродетонатора ЭДС-1.

4 декабря 2015 г. в ООО «Газпром Георесурс» (поднадзорно Северо-Уральскому управлению) при проведении вертикального сейсмопрофилирования (ВСП) в скважине № 50 Малыгинского месторождения, в Ямальском районе ЯНАО произошел взрыв ВМ в бытовке, предназначенной для обогрева и ветровой защиты персонала. При проведении расследования было выявлено, что в помещении находился сменный запас взрывчатых материалов: средства инициирования, а также снаряженные электродетонаторами заряды. В результате грубейших нарушений правил безопасности с целью сокращения времени, требующегося для проведения взрывных работ, персоналом допускалась предварительная подготовка зарядов с присоединением их к взрывной магистрали. После погружения очередного заряда в скважину к взрывной машинке был подсоединен участок магистрали не от заряда, погруженного в скважину, а от заряда, находящегося в бытовке, среди заранее подготовленных. В результате взрыва погибло 3 и пострадало 2 человека.

Также выявлено, что взрывные работы проводились при отсутствии разрешения на их проведение, при нахождении в границах опасной зоны персонала, не связанного с заряжанием, а также помимо взрывника взрывные работы непосредственно выполнял руководитель взрывных работ, не имеющий на это права.

Аварии и случаи смертельного травматизма допущены организациями, поднадзорными Уральскому управлению (1 авария, 3 погибших при отсутствии смертельного травматизма в 2014 г.) и Северо-Уральскому управлению (2 аварии и 3 погибших при отсутствии смертельного травматизма в 2014 г.). Распределение аварий и несчастных случаев по территориальным органам Ростехнадзора представлено в табл. 94.

Территориальными управлениями Ростехнадзора в рамках антитеррористической деятельности проводилась работа по контролю за обеспечением сохранности ВМ в поднадзорных организациях, повышению антитеррористической защищенности объектов, связанных с производством, хранением и применением ВМ.
Таблица 94

Распределение аварий и несчастных случаев по территориальным органам

<table>
<thead>
<tr>
<th>Территориальные органы</th>
<th>Аварийность</th>
<th>Групповой травматизм</th>
<th>Смертельный травматизм</th>
</tr>
</thead>
<tbody>
<tr>
<td>Уральское управление</td>
<td>—</td>
<td>1</td>
<td>—</td>
</tr>
<tr>
<td>Печорское управление</td>
<td>1</td>
<td>—</td>
<td>1</td>
</tr>
<tr>
<td>Северо-Уральское управление</td>
<td>—</td>
<td>2</td>
<td>—</td>
</tr>
<tr>
<td>Западно-Уральское управление</td>
<td>2</td>
<td>—</td>
<td>1</td>
</tr>
<tr>
<td>Северо-Восточное управление</td>
<td>1</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Итого:</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

На предприятиях, эксплуатирующих ОПО, назначены ответственные лица за организацию защиты от возможных террористических актов, разработаны мероприятия по исключению проникновения посторонних лиц на территорию опасных производственных объектов. С персоналом предприятий проводится работа анти-террористической направленности: занятия, инструктажи, ознакомление с планом ликвидации аварий.

Особое внимание уделяется вопросам сокращения объемов перевозок ВВ за счет увеличения их производства из невзрывчатых компонентов в смесительно-зарядных машинах и на стационарных пунктах, расположенных вблизи мест производства взрывных работ.

Проводится систематическая разъяснительная работа в организациях по вопросам безопасного обращения с ВМ, обеспечения их учета и сохранности, мерам по противодействию терроризму. В организациях изданы соответствующие приказы, назначены ответственные лица за обеспечение защиты опасных производственных объектов от террористических актов, в планы ликвидации аварий внесены позиции по отражению нападений на охраняемый объект. Случаев террористических актов на подконтрольных объектах не зафиксировано.

В 2015 г. численность инспекторского состава, осуществляющего надзор в области обращения ВМ, по сравнению с 2014 г. сократилась на 3 % и составила 83 человека, из них совмещают указанный вид надзора с другими надзорами — 65. Инспекторским составом в отношении организаций, осуществляющих деятельность в области обращения ВМ, проведено 1870 проверок (на 16 % больше, чем в 2014 г.), из них проверок по контролю за исполнением предписаний — 246 (на 20 % больше). Выявлено всего нарушений — 3778 (на 7 % больше, чем в 2014 г.), из них связанных с невыполнением предписаний органов государственного надзора — 82 (на 80 % больше).

При проведении проверок наложено 607 административных наказаний (на 21 % больше, чем в 2014 г.), в том числе 583 административных штрафа (на 18 % больше, чем в 2014 г.).

Общая сумма штрафов составила 38,9 млн руб. (на 70 % больше, чем в 2014 г.), в том числе на юридическое лицо — 26,5 млн руб. (на 120 % больше). Произведено 15 административных приостановлений деятельности (в 2014 г. — 5 приостановлений) и 3 раза материалы проверок были переданы в правоохранительные органы для возбуждения уголовных дел (в 2014 г. — 3).

В 2015 г. после трех лет снижения произошел рост показателей надзорной деятельности, которые достигли уровня 2011 г. (табл. 95).
Таблица 95

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Проведено проверок</td>
<td>1654</td>
<td>1497</td>
<td>2247</td>
<td>1618</td>
<td>1870</td>
</tr>
<tr>
<td>Выявлено нарушений</td>
<td>7270</td>
<td>4668</td>
<td>4052</td>
<td>3531</td>
<td>3778</td>
</tr>
<tr>
<td>Общее количество административных нарушений, наложенных по итогам проверок</td>
<td>650</td>
<td>592</td>
<td>507</td>
<td>503</td>
<td>607</td>
</tr>
<tr>
<td>Общее количество проверок, по итогам которых материалы переданы в правоохранительные органы для возбуждения уголовных дел</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Административный штраф</td>
<td>562</td>
<td>516</td>
<td>494</td>
<td>492</td>
<td>583</td>
</tr>
<tr>
<td>Сумма штрафа, млн руб.</td>
<td>22,2</td>
<td>29,8</td>
<td>23,8</td>
<td>22,7</td>
<td>38,9</td>
</tr>
</tbody>
</table>
Ростехнадзор осуществляет взаимодействие с Федеральной службой по техническому и экспортному контролю (ФСТЭК России) в области надзора за оборотом ВМ. Действует Соглашение об информационном обмене между ФСТЭК России, МВД России и Ростехнадзором при осуществлении контроля за целевым использованием взрываемых в Российскую Федерацию взрывчатых материалов промышленного назначения.

В целях реализации п. 9 постановления Правительства Российской Федерации от 25 августа 2005 г. № 537 «О функциях федеральных органов исполнительной власти и Российской академии наук по реализации Договора о всеобъемлющем запрещении ядерных испытаний» осуществляется взаимодействие с Минобороны России. Ростехнадзором ежеквартально представляются в Минобороны России сведения о проведенных и планируемых на территории Российской Федерации массовых взрывах.

По результатам проведенных проверок поднадзорных организаций, а также с учетом состояния аварийности и производственного травматизма в отчетном году установлено ослабление надзора на подземных объектах I класса опасности, где осуществляется деятельность, связанная с обращением ВМ.

На объектах с установленным режимом постоянного государственного надзора выявлены неудовлетворительная организация и осуществление производственного контроля за соблюдением производственной и технологической дисциплины при обращении с ВМ, отсутствует контроль за их сохранностью. Выявлены случаи оставления ВМ без охраны, формального подтверждения расхода ВМ, нарушения порядка хранения на местах ведения работ. Со стороны руководителей взрывных работ отсутствует контроль за заряжанием и взрыванием, соблюдением проектной документации на взрывные работы. Указанные нарушения в ОАО «Высокогорский ГОК», ОАО «Гайский ГОК» привели к авариям, несчастным случаям со смертельным исходом и утратам ВМ.

Необходимо принятие мер по снижению уровня аварийности и производственного травматизма при прострелочно-взрывных работах и взрывных работах при сейсморазведке.

По итогам расследований аварий и несчастных случаев необходимо привлекать к административной ответственности как должностных, так и юридических лиц, ответственных за нарушения требований промышленной безопасности. За системные, повторяющиеся нарушения правил безопасности при взрывных работах необходимо принимать жесткие меры на основе максимальной реализации предоставленных органам Ростехнадзора полномочий. При наличии повторных нарушений правил безопасности, приведших к аварии или несчастному случаю со смертельным исходом, необходимо обращаться в суд с заявлением об аннулировании лицензии на деятельность в области взрывчатых материалов промышленного назначения.

Остаются актуальными вопросы повышения безопасности производства взрывных работ в подземных горных выработках, замены пневматического заряжания гранулированными взрывчатыми веществами на другие виды механизированного заряжания с использованием более безопасных эмульсионных и гелевых взрывчатых веществ, при которых будет исключена возможность образования в рабочей зоне взрывоопасной пылевоздушной смеси и зарядов статического электричества.

Предлагается продолжить работу с руководителями поднадзорных предприятий для принятия соответствующих мер по переходу на новые, более безопасные техно-
логии производства взрывных работ в подземных горных выработках. Нежелание организаций совершенствовать технологии взрывного дела приводит к авариям с человеческими жертвами.

С целью совершенствования контролю-надзорной деятельности территориальных органов целесообразно проведение семинаров и обучение инспекторского состава.

2.2.16. Транспортирование опасных веществ

Общее количество поднадзорных организаций, осуществляющих деятельность в области промышленной безопасности при транспортировании опасных веществ, в 2015 г. составило 3261 (в 2014 г. — 3225), в том числе 3843 (2014 г. — 2945) организации осуществляют деятельность по эксплуатации опасных производственных объектов (далее — ОПО); деятельность по проектированию — 27 (26) организаций; строительству и расширению — 18 (18); консервации, ликвидации — 2 (2); изготовлению технических устройств, применяемых на ОПО, — 12 (13); монтажу и наладке технических устройств — 4 (2); обслуживанию и ремонту технических устройств — 31 (36); проведению экспертизы промышленной безопасности — 73 (82); подготовке (переподготовке) работников ОПО в необразовательных учреждениях — 91 (84).

Надзор осуществляется инспекторским составом в количестве 88 (83) работников, из которых 67 (49) осуществляют надзор по двум и более видам деятельности.

Подконтрольные предприятия имеют на балансе средства транспортирования опасных веществ в количестве 48 842 единиц, состоящих из автомобильных транспортных средств (специально оборудованных грузовых автомобилей, автоцистерн, тягачей, прицепов и полуприцепов для перевозки нефтепродуктов, сжиженных углеводородных газов, взрывчатых материалов и других опасных веществ) в количестве 5900 единиц; а также цистерн, контейнеров, баллонов для газов, взрывопожароопасных и токсичных сред, используемых в качестве тары; железнодорожные пути и автомобильные дороги необщего пользования; железнодорожные переезды и стрелочные переводы; пункты погрузки-выгрузки опасных веществ и пр.

Протяженность путей (дорог) необщего пользования, эксплуатируемых в составе ОПО, составляет 23 273,5 км, из которых 15 218,3 км составляют железнодорожные пути.

На опасных производственных объектах транспортирования опасных веществ в 2015 г. произошел один случай смертельного травматизма в ОАО «РУСАЛ Красноярский Алюминиевый Завод» с составителем поездов.

В 2014 г. зарегистрировано две аварии, одна из которых с групповым несчастным случаем, в 2015 г. — одна авария (табл. 96).

<table>
<thead>
<tr>
<th>Причина</th>
<th>2014 г.</th>
<th>2015 г.</th>
<th>+/–</th>
</tr>
</thead>
<tbody>
<tr>
<td>Термический ожог</td>
<td>1</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Химический ожог</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Отравление</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Разрушение технических устройств</td>
<td>1—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Нарушение регламента обслуживания технического устройства</td>
<td>—</td>
<td>1</td>
<td>—</td>
</tr>
<tr>
<td>Итого:</td>
<td>2</td>
<td>1</td>
<td>−1</td>
</tr>
</tbody>
</table>
Таблица 97
Данные о несчастных случаях со смертельным исходом в 2014 и 2015 гг. по субъектам Российской Федерации

<table>
<thead>
<tr>
<th>Субъекты Российской Федерации</th>
<th>2014 г.</th>
<th>2015 г.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Сибирский федеральный округ</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>г. Красноярск</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Уральский федеральный округ</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Тюменская область, Северо-Уральское управление</td>
<td>1</td>
<td>—</td>
</tr>
<tr>
<td>Южный федеральный округ</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Волгоградская область, Нижне-Волжское управление</td>
<td>1</td>
<td>—</td>
</tr>
<tr>
<td>Итого по России:</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(+) рост/(-) снижение:</td>
<td>2</td>
<td>−1</td>
</tr>
</tbody>
</table>

Таблица 98
Распределение аварий по субъектам Российской Федерации и территориальным органам Ростехнадзора за 2014 и 2015 гг.

<table>
<thead>
<tr>
<th>Федеральные округа Российской Федерации</th>
<th>2014 г.</th>
<th>2015 г.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Уральский федеральный округ</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Тюменская область, Северо-Уральское управление</td>
<td>1</td>
<td>—</td>
</tr>
<tr>
<td>Южный федеральный округ</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Волгоградская область, Нижне-Волжское управление</td>
<td>1</td>
<td>—</td>
</tr>
<tr>
<td>Итого по России:</td>
<td>2</td>
<td>—</td>
</tr>
<tr>
<td>(+) рост/(-) снижение:</td>
<td>2</td>
<td>−2</td>
</tr>
</tbody>
</table>

Таблица 99
Данные о несчастных случаях со смертельным исходом по субъектам Российской Федерации за 2014 и 2015 гг.

<table>
<thead>
<tr>
<th>Субъекты Российской Федерации</th>
<th>2014 г.</th>
<th>2015 г.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Сибирский федеральный округ</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>г. Красноярск</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Уральский федеральный округ</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Тюменская область, Северо-Уральское управление</td>
<td>1</td>
<td>—</td>
</tr>
<tr>
<td>Итого по России:</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>(+) рост/(-) снижение:</td>
<td>2</td>
<td>−1</td>
</tr>
</tbody>
</table>

В государственном реестре зарегистрировано 12 участков транспортирования опасных веществ, отнесенных к I классу опасности, 74 — ко II классу опасности, 1469 — к III классу опасности, 363 — к IV классу опасности. Отмечено, что есть объекты, не прошедшие перерегистрацию по различным причинам, в их числе 12 предприятий, поднадзорных Межрегиональному территориальному управлению Ростехнадзора. Также 2136 участков транспортирования зарегистрировано в составе технологических опасных производственных объектов.

В ходе проведения перерегистрации в Уральском управлении перерегистрировано 179 поднадзорных организаций (юридических лиц), осуществляющих эксплуатацию ОПО в части транспортирования опасных веществ с понижением класса опасности.

Основным предметом внимания инспекторов и ответственных за производственный контроль на ОПО было выявление травмоопасных рабочих мест и производств.
При проведении плановых проверок инспекторами проверялись предоставленные сведения об организации и осуществлении производственного контроля, в том числе: результаты контрольно-профилактических проверок комиссией предприятия, выполнение мероприятий по локализации аварий и инцидентов и ликвидации их последствий, мероприятий по обеспечению промышленной безопасности, документы по подготовке и проведению учебных тревог, техническое состояние зданий и сооружений, технических устройств.

Другим основным направлением обеспечения промышленной безопасности на участках транспортирования опасных веществ является контроль за состоянием железнодорожных путей необщего пользования и приведение их к IV классу, а также по замене стрелочных переводов. Критические параметры по состоянию железнодорожных путей не установлены.

Основными проблемами, связанными с эксплуатацией участков транспортирования опасных веществ, остаются устаревшие и имеющие значительный износ технические устройства, железнодорожные пути и сооружения, а также недостаточное финансирование для модернизации участков и с целью замены и реконструкции подвижного состава и путей, отработавших нормативные сроки.

В течение 2015 г. продолжалась работа по практической реализации Федерально-го закона № 116-ФЗ, Федерального закона № 99-ФЗ «О лицензировании отдельных видов деятельности» в части оформления (переоформления) лицензий на эксплуатацию взрывопожароопасных и химически опасных производственных объектов.

Проверки соблюдения условий действия лицензий проводились в ходе очередных обследований предприятий и в период предлицензионных и лицензионных проверок (табл. 100).

Таблица 100

<table>
<thead>
<tr>
<th>УТЭН</th>
<th>Наименование лицензируемого вида деятельности</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Предоставлено лицензий</td>
</tr>
<tr>
<td>------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Эксплуатация взрывопожароопасных и химически опасных производственных объектов 1, II, III классов опасности</td>
<td>50</td>
</tr>
</tbody>
</table>

В отчетном периоде территориальными органами Ростехнадзора проводились работы по реализации прав, предоставленных Кодексом Российской Федерации об административных правонарушениях.

В 2015 г. проведено в отношении юридических лиц и индивидуальных предпринимателей 1795 (в 2014 г. — 1534) проверок, из которых 213 (156) проверок проведено в рамках осуществления режима постоянного государственного надзора, 1059 (846) внеплановых, в том числе 604 (342) проверки по выполнению лицензионных требований и условий.
В 559 (в 2014 г. — 576) проверках выявлено 3803 (3820) правонарушения, в 415 (439) случаях наложены административные наказания, из них 276 (295) — на должностных лиц, 98 (94) — на юридических лиц. Сумма штрафов составила 13 883 (14 757) тыс. рублей.

В 2015 г. значительных нарушений антитеррористической защищенности эксплуатируемых на опасных производственных объектах, связанных с транспортированием опасных веществ, не зафиксировано.

Инспекторами при проведении обследований поднадзорных предприятий и организаций, осуществляющих эксплуатацию опасных производственных объектов, связанных с транспортированием опасных веществ, проверяется готовность этих организаций к действиям по предупреждению, локализации и ликвидации аварийных ситуаций в рамках подсистемы РСЧС.

При проверках установлено, что нештатные аварийно-спасательные формирования (НАСФ) созданы на предприятиях и в организациях по основным опасным производствам, при этом учитываются производственные объекты, связанные с транспортированием опасных веществ.

Предприятиями, не имеющими собственных аварийно-спасательных формирований, заключаются договоры на обслуживание со специализированными аварийно-спасательными формированиями, в основном с ФГП «Ведомственная охрана железнодорожного транспорта России».

Вместе с тем существующие проблемы при обслуживании профессиональными спасательными службами, состоящие в том числе в большой удаленности участков транспортирования от ряда основных производств опасных производственных объектов, отсутствии специалистов в профессиональных спасательных службах в случаях аварий и инцидентов на объектах транспортирования опасных веществ, в настоящее время решены не полностью.

В целях повышения качества контроля и надзора на объектах, связанных с транспортированием опасных веществ, целесообразно подготовить и согласовать в установленном порядке методические рекомендации по разработке ПЛАС для участков транспортирования опасных веществ железнодорожным и автомобильным транспортом и методические рекомендации по подготовке автотранспортных средств к перевозкам опасных грузов.

Для повышения квалификации специалистов Ростехнадзора, осуществляющих контрольно-надзорные мероприятия на ОПО, необходимо продолжать работу по повышению квалификации инспекторского состава на семинарах и курсах; повышать уровень требовательности инспекторского состава по отношению к поднадзорным организациям.
2.2.17. Взрывопожароопасные объекты хранения и переработки растительного сырья

В 2015 г. число поднадзорных организаций, осуществляющих деятельность в области промышленной безопасности взрывопожароопасных объектов хранения и переработки растительного сырья, составило 4135 (в 2014 г. — 4100), из которых 3789 (в 2014 г. — 3750) организаций осуществляют деятельность по эксплуатации объектов.

Предприятия, эксплуатирующие данные объекты, расположены в основном в Саратовской, Воронежской, Белгородской, Ростовской областях, Ставропольском, Алтайском, Краснодарском краях, Республике Башкортостан.

Количество поднадзорных объектов по итогам работы в 2015 г. уменьшилось и составляет 9448 (за 12 мес. 2014 г. — 9838), что по-прежнему связано с продолжением идентификации и классификации поднадзорных объектов с учетом единой площадки конкретного производства, а также с исключением опасных производственных объектов из государственного реестра.

В эксплуатации находится 59 элеваторов IV степени огнестойкости (из деревянных строительных конструкций), поднадзорных Центральному, Средне-Поволжскому, Западно-Уральскому, Волжско-Окскому, Приокскому, Приволжскому, Верхне-Донскому и Нижне-Волжскому управлением.

В то же время в поднадзорных Нижне-Волжскому управлению организациях в соответствии с документацией на ликвидацию, прошедшей экспертизу промышленной безопасности, произведен демонтаж деревянных конструкций элеваторов и исключены из государственного реестра объекты АО «Элеватор» Родничковский филиал и ОАО «Аткарский маслоэкстракционный завод», а также прекращена эксплуатация деревянных элеваторов в Воронежской области (имеется свидетельство об охране памятника архитектуры) и в Костромской области (предприятие является банкротом).

Под надзором также находятся предприятия, деятельность которых связана с производством древесных гранул из отходов деревообрабатывающих производств, объекты которых относятся к IV классу опасности. Так, на территории Енисейского управления, Центрального управления (Костромская область) имеется по одному предприятию.

В Республике Северная Осетия — Алания расположено предприятие, занимающееся выпуском топливного этанола (биоэтанола), высокооктанового топлива, которое можно использовать как вместе с бензином, так и в неразбавленном виде с денатуратом.

По сведениям Северо-Западного управления, твердое биотопливо, для производства которого используются отходы деревообработки, мебельного производства, производства кофе, выпускается на поднадзорной территории рядом предприятий, расположенных в Санкт-Петербурге, Ленинградской области и Республике Карелия.

29 октября 2015 г. в ОАО «Татарстанские зерновые технологии», Республика Татарстан, г. Казань (поднадзорно Приволжскому управлению), на объекте III класса опасности, на складе № 1(12) отдельно стоящего сушильного участка зерна Печеньшинского филиала, произошло возгорание механизированного склада бестарного напольного хранения зерна.

Анализ причин аварий на объектах показывает, что одной из них в 2015 г. по-прежнему остается нарушение порядка проведения работ и ведения технологических процессов на производстве.

В 2015 г. имели место тяжелые несчастные случаи в ЗАО «Завод растительных масел Бобровский» (Воронежская область), ГУСП совхоз Рощинский (Республика Башкортостан), основными причинами которых являлись недостаточный контроль со стороны должностных лиц предприятий за выполнением подчиненными работниками требований охраны труда и соблюдением ими требований правил внутреннего трудового распорядка.

Распределение аварий по видам и причинам аварий, а также распределение несчастных случаев со смертельным исходом по травмирующим факторам и в разрезе субъектов Российской Федерации приведено в табл. 101–103.

Таблица 101

<table>
<thead>
<tr>
<th>Виды аварий</th>
<th>Число аварий</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2014 г.</td>
</tr>
<tr>
<td>Взрыв</td>
<td>1</td>
</tr>
<tr>
<td>Разрушение сооружений</td>
<td>—</td>
</tr>
<tr>
<td>Всего:</td>
<td>1</td>
</tr>
</tbody>
</table>

Таблица 102

<table>
<thead>
<tr>
<th>Виды аварий</th>
<th>Число аварий</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2014 г.</td>
</tr>
<tr>
<td>Нарушение порядка проведения работ и ведения технологических процессов</td>
<td>1</td>
</tr>
<tr>
<td>Всего:</td>
<td>1</td>
</tr>
</tbody>
</table>

Таблица 103

<table>
<thead>
<tr>
<th>Травмирующие факторы</th>
<th>Количество смертельно травмированных, чел.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2014 г.</td>
</tr>
<tr>
<td>Удушье в результате попадания сыпучего продукта в дыхательные пути</td>
<td>4</td>
</tr>
<tr>
<td>Травмирование в результате аварии (взрыва)</td>
<td>2</td>
</tr>
<tr>
<td>Механическая асфиксия вследствие компрессии внутренних органов</td>
<td>—</td>
</tr>
<tr>
<td>Всего:</td>
<td>6</td>
</tr>
</tbody>
</table>
В 2015 г. зафиксировано 26 инцидентов (в 2014 г. — 80), из которых порядка 85% связаны с отказом или повреждением технических устройств, остальные — с отклонением от режима технологического процесса, что свидетельствует о недоработках в части контроля за функционированием технических служб (в том числе в части планово-предупредительного ремонта) и служб производственного контроля поднадзорных предприятий.

В 2015 г. территориальными управлениями Ростехнадзора в отношении юридических лиц и индивидуальных предпринимателей, осуществляющих деятельность в области промышленной безопасности на объектах хранения и переработки растительного сырья, проведено 1464 (в 2014 г. — 1627) проверок, из которых 1003 (в 2014 г. — 996) — внеплановые.

В ходе проведения проверок в 2015 г. выявлено и предписано к устранению 6320 (в 2014 г. — 6611) нарушений, из которых 679 (в 2014 г. — 794) — в части невыполнения требований поднадзорных предприятий.

В ходе проверок выявляются нарушения, основными из которых являются: отсутствие или несоблюдение установленных сроков проведения экспертиз зданий и сооружений, технических устройств, применяемых на объектах; недостаточная оснащенность технологического и транспортного оборудования средствами взрывозащиты и взрывопредупреждения, в том числе отсутствие или неправильное ведение технической документации по контролю за данными средствами; не в полном объеме оснащение или отсутствие магнитных заграждений; несоблюдение требований промышленной безопасности при организации и проведении работ повышенной опасности (огневых работ, работ в силосах и бункерах, погрузо-разгрузочных работ и т.п.), связанных в том числе с недостаточным уровнем квалификации руководителей и специалистов поднадзорных организаций; несоответствие конструкции электроустановок, защиты от статического электричества, организации эксплуатации электроустановок во взрывопожароопасных зонах техническим регламентам и нормативно-технической документации.

В 2015 г. по результатам проверок поднадзорных объектов назначено 772 (в 2014 г. — 741) административных наказаний, в том числе 80 (в 2014 г. — 76) административных приостановлений деятельности и 664 (в 2014 г. — 641) административных штрафа (497 (в 2014 г. — 525) на должностных лиц и 161 (в 2014 г. — 96) на юридических лиц).

Наиболее активно административное приостановление деятельности применялось Приволжским управлением (31), Сибирским управлением (28), а также Центральным управлением (6), Верхне-Донским управлением (4), Кавказским управлением (4), Нижне-Волжским управлением (4), Уральским управлением (3).

Мера административного наказания в виде дисквалификации в 2015 г. не применялась.

Число отказов в выдаче лицензии организациям по эксплуатации взрывопожароопасных и химически опасных производственных объектов I, II, и III классов опасности в 2015 г. значительно увеличилось по сравнению с аналогичным периодом и составило 53 (в 2014 г. — 18).

Число переоформленных лицензий увеличилось и составило 268 (в 2014 г. — 136), что связано с изменением наименования лицензируемого вида деятельности и выполняемого вида работ (услуг).
Наибольшее число лицензий в 2015 г. переоформлено в Верхне-Донском управлении (53), Северо-Кавказском управлении (54), Кавказском управлении (26), Сибирском (28) управлении.

Действие лицензий за 12 месяцев 2015 г. и аналогичный период 2014 г. не приостанавливалось и не аннулировалось по решению суда.

В 2015 г. увеличилось на 76 % количество объектов (с 67 до 118), на которых велись работы по реконструкции, капитальному ремонту, техническому перевооружению и модернизации, за счет предприятий, поднадзорных Северо-Кавказскому управлению (88). Данные работы также осуществлялись на объектах, поднадзорных Уральскому, Северо-Западному и Верхне-Донскому управлениям.

Количество объектов на территории Российской Федерации, находящихся на стадии консервации, увеличилось и составило 122 объекта (в 2014 г. — 105), из них 22 объекта поднадзорны Волжско-Окскому управлению, 21 — Западно-Уральскому управлению, 14 — Северо-Западному управлению, 12 — Верхне-Донскому управлению, 10 — Енисейскому управлению.

Из-за отсутствия сырья неритмично работали предприятия, поднадзорные Нижне-Волжскому управлению, а также произошло резкое снижение показателей производственной деятельности, а в ряде случаев и прекращение деятельности предприятий, поднадзорных Средне-Поволжскому, Кавказскому (Республика Дагестан) управлениям.

При этом количество объектов, находящихся в стадии ликвидации, осталось практически на прежнем уровне — 49 (в 2014 г. — 48).

Проведенный анализ отчетов о производственном контроле и результатов проверок показал, что на ряде поднадзорных предприятий производственный контроль осуществляется неэффективно, ответственные специалисты проводят данную работу формально; работники, осуществляющие производственный контроль, не влияют на техническую политику руководителя предприятия в области обеспечения промышленной безопасности объектов, а владельцы предприятий не в полной мере создают условия для обеспечения промышленной безопасности (не выделяют необходимые финансовые средства).

На ряде предприятий в связи с нарушениями, выявленными в осуществлении производственного контроля, должностные лица, ответственные за его организацию, были привлечены к административной ответственности.

Уровень готовности предприятий к ликвидации и локализации последствий аварий поддерживается регулярным проведением учебно-тренировочных занятий. Контроль за выполнением графиков проведения противоаварийных тренировок осуществляется государственными инспекторами при проведении проверок.

Однако при проверках выявлены предприятия, где не в полной мере готовы к действиям по локализации аварий и ликвидации их последствий. При этом, например, проблемой для объектов, поднадзорных Нижне-Волжскому управлению, является недостаточная оснащенность соответствующих подразделений современными средствами защиты и спасения персонала, а для объектов, поднадзорных Волжско-Окскому, — отсутствие у большинства предприятий средств и оборудования для локализации и ликвидации аварий в силосах.

Для поддержания на должном уровне промышленной безопасности поднадзорных объектов и повышения эффективности надзора и контроля на объектах необходимы:
1. Разработка и внедрение современных отечественных технологий, оборудования и средств противоаварийной защиты, позволяющих снизить риск возникновения аварийных ситуаций и исключение импортозависимости поднадзорных предприятий.

2. Внедрение дистанционного контроля за промышленной безопасностью поднадзорных объектов, в том числе посредством мониторинга реального состояния контролируемых параметров в режиме реального времени.

3. Организация в территориальных органах Ростехнадзора регулярного повышения квалификации сотрудников, непосредственно осуществляющих контроль и надзор за состоянием промышленной безопасности поднадзорных объектов, по вопросам осуществления контрольной и надзорной деятельности, а также по вопросам расследования происшествий и оформления материалов расследований.

4. Продолжение дальнейшей работы по реализации риск-ориентированного подхода к обеспечению промышленной безопасности, включая разработку методик оценки риска аварий на отраслевых объектах.

2.2.18. Объекты, на которых используется оборудование, работающее под давлением

Ростехнадзор осуществляет надзор за 20 856 организациями (юридическими лицами), осуществляющими деятельность в области промышленной безопасности, в том числе за 17 724 организациями, эксплуатирующими опасные производственные объекты.

Количество оборудования, эксплуатируемого на поднадзорных предприятиях и организациях, составляет 393 183 единицы, из них: котлов — 70 041, в том числе 7003 — импортного производства; сосудов, работающих под давлением, — 283 963 (с быстросъемными крышками — 4403), в том числе 57 475 — импортного производства (с быстросъемными крышками — 1577); трубопроводов пара и горячей воды — 37 473 ед. общей протяженностью 49 405,56 км; газонаполнительных станций и испытательных пунктов баллонов — 1706.

Динамика изменения количества технических устройств, в том числе по типам поднадзорных технических устройств, в период 2012—2015 гг. приведена в табл. 104 и наглядно показана на рис. 20.

Как показывают отчетные сведения, по состоянию на 1 января 2016 г. доля оборудования, работающего под избыточным давлением, импортного производства, эксплуатируемого на опасных производственных объектах Российской Федерации, составляет только 16 %, поскольку практически все эксплуатируемые на поднадзорных предприятиях и организациях трубопроводы пара и горячей воды производятся (доизготавливаются или монтируются) непосредственно на месте их эксплуатации на территории России, а поставляемые в Россию паровые и водогрейные котлы зачастую не соответствуют требованиям промышленной безопасности. Самое большое количество оборудования, работающее...
го под избыточным давлением, иностранного производства (более 14,5 % от общего количества поднадзорных технических устройств и 89 % всего оборудования иностранного производства) — это сосуды, работающие под давлением.

Таблица 104

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Паровые и водогрейные котлы</td>
<td>73 388</td>
<td>72 936</td>
<td>71 062</td>
<td>70 041</td>
</tr>
<tr>
<td>Сосуды, работающие под давлением</td>
<td>276 510</td>
<td>293 064</td>
<td>297 919</td>
<td>283 963</td>
</tr>
<tr>
<td>Трубопроводы пара и горячей воды</td>
<td>31 167</td>
<td>32 659</td>
<td>33 374</td>
<td>37 473</td>
</tr>
<tr>
<td>Газонаполнительные станции и испытательные пункты баллонов</td>
<td>1 805</td>
<td>1 754</td>
<td>1 731</td>
<td>1 706</td>
</tr>
<tr>
<td>Итого:</td>
<td>382 870</td>
<td>400 413</td>
<td>404 086</td>
<td>393 183</td>
</tr>
</tbody>
</table>

Показатели аварийности и производственного травматизма со смертельным исходом

Одной из главных задач Ростехнадзора в области промышленной безопасности является обеспечение состояния защищенности жизненно важных интересов личности и общества от аварий на опасных производственных объектах и последствий указанных аварий. В целях ее исполнения ведется учет аварий и несчастных случаев, произошедших при эксплуатации опасных производственных объектов, с последующим проведением анализа результатов технического расследования причин аварий и несчастных случаев, а также разработка мер по устранению последствий аварий и проведение профилактических мероприятий, направленных на предупреждение возникновения в поднадзорных организациях аварийных ситуаций и несчастных случаев при эксплуатации опасных производственных объектов.
На основе отчетных сведений проведен анализ аварийности и травматизма при эксплуатации оборудования, работающего под избыточным давлением, за период с 2006 по 2015 г. включительно.

Результаты анализа показывают, что в течение 10 лет на поднадзорных объектах произошло 34 аварии и 57 несчастных случаев со смертельным исходом (рис. 22—23).

Всего в течение 10 лет в результате аварий и несчастных случаев травмы различной степени тяжести получили 98 человек, из них:

74 человека из числа персонала, обслуживающего технические устройства;
9 человек из числа инженерно-технических работников, в обязанности которых входит организация безопасной эксплуатации технических устройств;
12 работников организаций, в которых произошли несчастные случаи, не связанные с эксплуатацией оборудования, работающего под избыточным давлением;
3 человека, не являющихся работниками организаций, в которых произошли несчастные случаи (рис. 24).

Чаще всего пострадавшими в результате несчастных случаев при эксплуатации оборудования, работающего под избыточным давлением, становится обслуживающий данное оборудование персонал (76 % от общего числа пострадавших) (рис. 25). Более половины несчастных случаев, произошедших при эксплуатации оборудования, работающего под избыточным давлением (50 % от общего количества), вызваны термическим воздействием рабочей среды на пострадавших. Ниже приведены сведения о соотношении количества несчастных случаев в зависимости от травмирующих факторов (рис. 26).

Согласно отчетным сведениям наибольшее число аварий в период с 2006 по 2015 г. включительно (14 аварий из 32) зафиксировано при эксплуатации сосудов, работающих под давлением газов (паров) и жидкостей (в том числе токсичных и взрывопожароопасных).

Процент аварий, произошедших при эксплуатации паровых и водогрейных котлов, работающих на твердом, жидком и газообразном видах топлива, составил 31 % (10 аварий).

Вместе с тем следует отметить, что четвертая часть (25 %) от общего количества произошедших за десять лет аварий (8 аварий) зафиксирована при эксплуатации трубопроводов, транспортирующих пар и горячую воду, единственным признаком опасности для которых является давление транспортируемой среды (рис. 27).
При этом практически половина аварий (47 % от общего количества аварий за 10 лет) при эксплуатации оборудования, работающего под избыточным давлением (15 из 32 аварий), произошли в последние 5 лет (в период 2011–2015 гг.), в том числе в указанный период произошли 7 из 8 аварий (87,5 % от общего количества аварий за 10 лет) при эксплуатации трубопроводов пара и горячей воды (по 2 аварии в 2011 и 2012 гг., по одной аварии в 2013, 2014 и 2015 гг.), одна авария при эксплуатации паровых и водогрейных котлов и 7 из 14 аварий (50 % от общего количества аварий за 10 лет) при эксплуатации сосудов, работающих под давлением (по 2 аварии в 2011 и 2013 гг., 3 аварии в 2014 г.).

Рост аварийности при эксплуатации оборудования, работающего под избыточным давлением, в период 2011–2015 гг. связан прежде всего с увеличением количества отработавших нормативный срок службы технических устройств. Так, например, по состоянию на 1 января 2011 г. доля трубопроводов, отработавших расчетный срок службы, составляла 38 % (10 127 ед.) от общего количества находящихся в эксплуатации трубопроводов, а по состоянию на 1 января 2016 г. — 40,4 % (13 773 ед.) (рис. 28).
Кроме старения технических устройств росту аварийности способствует сокращение штата работников поднадзорных предприятий и организаций, в первую очередь вспомогательного обслуживающего персонала (например, обходчики трубопроводов) и ремонтного персонала (например, слесари КИПиА).

Всего в 2015 г. на поднадзорных объектах произошла одна авария, материальный ущерб от которой составил более 110 млн руб.

За аналогичный период 2014 г. были зарегистрированы 6 аварий с общим материальным ущербом более 180 млн руб. и 6 несчастных случаев со смертельным исходом.

Анализ деятельности эксплуатирующих организаций по повышению промышленной безопасности

Функции по контролю и надзору за соблюдением поднадзорными организациями требований промышленной безопасности осуществляют 5 сотрудников центрального аппарата Ростехнадзора и инспекторский состав территориальных органов Ростехнадзора в количестве 311 человек. Состояние промышленной безопасности объектов котлонадзора в поднадзорных организациях в целом оценивается удовлетворительно, несмотря на то что в 2015 г. резко уменьшилось по сравнению с 2014 г. количество инспекторов территориальных органов Ростехнадзора, осуществляющих функции по контролю и надзору (в 2014 г. контрольно-надзорные функции осуществлялись инспекторским составом территориальных органов Ростехнадзора в количестве 351 человека).

В то же время следует отметить, что на предприятиях имеют место технические, организационные и финансовые проблемы, снижающие уровень промышленной безопасности.

Основной проблемной причиной снижения уровня промышленной безопасности в области надзора за оборудованием, работающим под избыточным давлением, является большое количество оборудования, отработавшего свой расчетный ресурс. При этом следует отметить, что в 2015 г. наблюдается рост темпов замены физически и морально устаревшего оборудования на новое, что можно объяснить изменениями законодательства Российской Федерации в области промышленной безопасности, ужесточившими требования к техническим устройствам, эксплуатация которых осуществляется за пределами срока службы, установленного изготовителем.

Таблица 105

<table>
<thead>
<tr>
<th>Наименование технических устройств</th>
<th>Общее количество технических устройств, ед.</th>
<th>Отработало нормативный срок службы, ед.</th>
<th>Средний процент износа</th>
</tr>
</thead>
<tbody>
<tr>
<td>Паровые и водогрейные котлы</td>
<td>70 041</td>
<td>36 202</td>
<td>51,7</td>
</tr>
<tr>
<td>Сосуды, работающие под давлением</td>
<td>283 963</td>
<td>130 106</td>
<td>45,8</td>
</tr>
<tr>
<td>Трубопроводы пара и горячей воды</td>
<td>37 473</td>
<td>15 814</td>
<td>42,2</td>
</tr>
<tr>
<td>Итого:</td>
<td>391 477</td>
<td>182 122</td>
<td>46,5</td>
</tr>
</tbody>
</table>

Рис. 29. Динамика изменения количества поднадзорного оборудования, отработавшего расчетный срок службы

В целях обеспечения готовности к действиям по локализации и ликвидации последствий аварий на объектах котлонадзора поднадзорными организациями запланированы и осуществляются мероприятия по локализации и ликвидации последствий аварии на опасном производственном объекте.

Противоаварийная устойчивость поднадзорных предприятий обеспечивается комплексом соответствующих организационно-технических мероприятий: использованием автоматических систем управления технологическим процессом, постоянным контролем содержания опасных веществ в воздухе рабочей зоны, разработкой планов ликвидации аварий, проведением противоаварийных учений, учебных тревог, наличием на предприятиях нештатных аварийно-спасательных формирований.

При проведении проверок инспекторским составом территориальных органов проверяется техническое состояние автоматических систем управления технологическим процессом, выполнение планов противоаварийных тренировок, их тематика, полнота охвата противоаварийными тренировками эксплуатационного персонала. Выявленные нарушения отражаются в актах проверок и предписаниях.
Обеспечение безопасности и противоаварийной устойчивости поднадзорных предприятий неразрывно связано с выполнением поднадзорными организациями мероприятий по антитеррористической устойчивости, выполнение которых непрерывно контролируется государственными инспекторами территориальных органов в ходе проведения обследований поднадзорных предприятий и организаций.

В 2015 г. инспекторами территориальных органов Ростехнадзора проведено 8528 проверок поднадзорных организаций, из них 2646 плановых, 5792 внеплановые и 90 мероприятий по контролю, проведенных в рамках режима постоянного государственного надзора.

В 2014 г. инспекторами территориальных органов Ростехнадзора проведено 8714 проверок поднадзорных организаций, из них 3027 плановых, 5612 внеплановых, и 75 мероприятий по контролю, проведенных в рамках режима постоянного государственного надзора.

По сравнению с аналогичным периодом 2014 г. количество проведенных проверок в первом полугодии 2015 г. практически не изменилось, уменьшение количества проведенных в 2015 г. проверок по сравнению с 2014 г. составило всего 2%.

Количество выявленных нарушений в 2015 г. снизилось по сравнению с аналогичным периодом 2014 г. на 13,7% (по сравнению с 2014 г. в 2015 г. инспекторы территориальных органов при проведении обследований поднадзорных организаций выявили на 3785 нарушений меньше).

В 2015 г. по результатам проведенных проверок нарушения требований нормативных правовых актов в области промышленной безопасности были выявлены в 33,5% проверенных организаций. За допущенные нарушения наложены 2507 административных штрафов на общую сумму 131 080 тыс. руб. Административное приостановление деятельности осуществлялось 95 раз. В 128 случаях за нарушение требований промышленной безопасности применялась такая мера административного воздействия, как предупреждение.

За 12 месяцев 2014 г. наложено 2516 административных штрафов на общую сумму 124 969 тыс. руб.

По сравнению с аналогичным периодом 2014 г. количество наложенных административных штрафов в 2015 г. уменьшилось на 9 ед. (уменьшение количества наложенных административных штрафов составило 0,4%), при этом сумма наложенных административных наказаний в виде штрафа увеличилась более чем на 6 млн руб. Учитывая уменьшение количества инспекторов, осуществляющих надзор, на 40 человек (что составляет более 10% от общей численности инспекторского состава территориальных органов Ростехнадзора), эффективность работы территориальных органов Ростехнадзора в 2015 г. выросла по сравнению с 2014 г. (в 2015 г. один инспектор в среднем провел 27 проверок поднадзорных организаций, что на 3 проверки больше показателя 2014 г.).

Федеральным законом от 4 марта 2013 г. № 22-ФЗ «О внесении изменений в Федеральный закон «О промышленной безопасности опасных производственных объектов», отдельные законодательные акты Российской Федерации и о признании утратившим силу подпункта 114 пункта 1 статьи 333.33 части второй Налогового кодекса Российской Федерации» внесены изменения в Федеральный закон от 21 июля 1997 г. № 116-ФЗ «О промышленной безопасности опасных производственных объектов» (далее Федеральный закон 116-ФЗ). Изменения коснулись классификации
опасных производственных объектов, формирования принципов риск-ориентированного надзора за соблюдением эксплуатирующими организациями требований промышленной безопасности.

Опасные производственные объекты (далее — ОПО), на которых применяется оборудование, работающее под избыточным давлением (далее — объекты котлонадзора) до 1,6 мегапаскаля или при температуре рабочей среды не более 250 градусов Цельсия (за исключением объектов, осуществляющих теплоснабжение населения и социально значимых объектов), отнесены к IV классу опасности, осуществление государственного надзора за которыми законодательством предусмотрено путем мониторинга информации, поступающей от эксплуатирующих организаций, без проведения плановых проверок, по причине идентификации и отнесения таких объектов к объектам с низким риском возникновения аварии при эксплуатации ОПО.

За счет появления вышеуказанного класса опасности, как следствия внесенных изменений в Федеральный закон 116-ФЗ, произошло уменьшение количества объектов, отнесенных к более высоким классам опасности ОПО, в отношении которых предусмотрено осуществление государственного контроля и надзора путем проведения плановых проверок.

В целях приведения нормативной базы в соответствие с законодательством Российской Федерации Ростехнадзором разработаны Федеральные нормы и правила в области промышленной безопасности «Правила промышленной безопасности опасных производственных объектов, на которых используется оборудование, работающее под избыточным давлением», устанавливающие обязательные требования к монтажу, эксплуатации, ремонту, модернизации, реконструкции и утилизации оборудования, работающего под избыточным давлением (паровых и водогрейных котлов, сосудов, работающих под давлением, трубопроводов пара и горячей воды, электрических котлов и т.д.).

Указанные Федеральные нормы и правила утверждены приказом Ростехнадзора от 25 марта 2014 г. № 116 (зарегистрирован в Минюсте России 19 мая 2014 г., регистрационный № 32326).

При непосредственном участии работников центрального аппарата Ростехнадзора также разработаны и прошли регистрацию в Минюсте России Федеральные нормы и правила в области промышленной безопасности «Требования к производству сварочных работ на опасных производственных объектах».

В соответствии с постановлением Правительства Российской Федерации от 13 мая 2013 г. № 407 Ростехнадзор является уполномоченным органом Российской Федерации по обеспечению государственного контроля (надзора) за соблюдением требований технического регламента Таможенного союза «О безопасности оборудования, работающего под избыточным давлением» (ТР ТС 032/2013).

Указанные полномочия осуществляются Ростехнадзором как в форме плановых и внеплановых проверок поднадзорных организаций, так и в форме дистанционного контроля путем мониторинга реестра выданных сертификатов соответствия и реестра принятых деклараций о соответствии, размещенных на официальном сайте Федеральной службы по аккредитации.

По итогам дистанционного контроля в адрес организаций, допустивших нарушения, направляются письма о необходимости предоставления документов в целях проверки и предписания о приостановлении или прекращении действия принятых деклараций о соответствии с одновременным уведомлением Федеральной службы по аккредитации о принятых мерах в рамках осуществления государственного контроля (надзора).
По итогам проведенных в 2015 г. мероприятий в рамках государственного контроля (надзора) за соблюдением поднадзорными организациями требований ТР ТС 032/2013, по фактам выявленных нарушений было прекращено действие 23 принятых изготовителями (заявителями) деклараций о соответствии, работающего под избыточным давлением. Были направлены письма в адрес 28 организаций-заявителей и 15 органов сертификации о необходимости устранения выявленных нарушений.

На основании писем Ростехнадзора по решению организаций-заявителей прекращено действие 14 деклараций о соответствии, а также прекращено действие 4 сертификатов соответствия по решению органов сертификации.

Кроме осуществления мероприятий по государственному контролю и надзору на постоянной основе ведется работа в технических комитетах по стандартизации: ТК-244 «Оборудование энергетическое», ТК-357 «Стальные трубы и баллоны», ТК-259 «Трубопроводная арматура и сильфоны».

Со дня вступления в силу технического регламента Таможенного союза «О безопасности оборудования, работающего под избыточным давлением» (ТР ТС 032/2013) по настоящее время Ростехнадзором проведены мероприятия по государственному контролю (надзору) за соблюдением требований ТР ТС 032/2013, в том числе принятые меры по приостановлению деклараций, привлечению к ответственности лиц, допустивших нарушения требований в области технического регулирования. При этом осуществлялось взаимодействие с иными федеральными органами исполнительной власти.

В целях доведения требований ТР ТС 032/2013 до работников территориальных органов Ростехнадзора центральным аппаратом Ростехнадзора регулярно проводятся семинары с сотрудниками территориальных органов Ростехнадзора и представителями поднадзорных организаций, органов по сертификации и испытательных лабораторий. Кроме этого в целях облегчения определения категории оборудования, работающего под избыточным давлением, в соответствии с ТР ТС 032/2013 разработан соответствующий программный продукт, который также размещен в подразделе «Надзор за оборудованием, работающим под давлением, грузоподъемными механизмами и подъемными сооружениями» раздела «Промышленная безопасность» официального сайта Ростехнадзора.

2.2.19. Объекты, на которых используются стационарно установленные грузоподъемные механизмы и подъемные сооружения

В соответствии с полномочиями, определенными Положением о Федеральной службе по экологическому, технологическому и атомному надзору, утвержденным постановлением Правительства Российской Федерации от 30 июля 2004 г. № 401, постановлением Правительства Российской Федерации от 13 мая 2013 г. № 407 «Об уполномоченных органах Российской Федерации по обеспечению государственного контроля (надзора) за соблюдением требований технических регламентов Таможенного союза» Ростехнадзором осуществляется государственный контроль (надзор), в том числе за соблюдением требований:

промышленной безопасности на опасных производственных объектах, составляющими которых являются стационарно установленные грузоподъемные механизмы (за исключением лифтов, подъемных платформ для инвалидов), эскалаторы в метрополитенах, канатные дороги;
технического регламента Таможенного союза «О безопасности машин и оборудования», принятого решением Комиссии Таможенного союза от 18 октября 2011 г. № 823 (ТР ТС 010/2011);
технического регламента Таможенного союза «Безопасность лифтов», принятого решением Комиссии Таможенного союза от 18 октября 2011 г. № 824 (ТР ТС 011/2011);
Правил устройства и безопасной эксплуатации платформ подъемных для инвалидов, утвержденных постановлением Госгортехнадзора России от 11 марта 2001 г. № 10; Правил устройства и безопасной эксплуатации эскалаторов, утвержденных постановлением Госгортехнадзора России от 2 августа 1994 г. № 47, при эксплуатации поэтажных эскалаторов, пассажирских конвейеров по вопросам, непротиворечащим требованиям действующего законодательства.

Кроме осуществления мероприятий государственного контроля (надзора) ведется постоянная работа в технических комитетах по стандартизации: ТК 209 «Лифты, эскалаторы, пассажирские конвейеры и подъемные платформы для инвалидов»; ТК 289 «Краны грузоподъемные»; ТК 438 «Подъемники с рабочими платформами»; ТК 253 «Складское оборудование».

Надзор за объектами, на которых используются стационарно установленные грузоподъемные механизмы и подъемные сооружения (далее — подъемные сооружения), осуществляют 4 сотрудника центрального аппарата Ростехнадзора и инспекторский состав территориальных органов Ростехнадзора в количестве 390 человек.

На 73 631 поднадзорных предприятиях и организациях эксплуатируются почти 780 тыс. подъемных сооружений (из них 204 780 грузоподъемных кранов, 23 218 подъемников (вышек), 527 567 лифтов, 213 подвесных канатных дорог, 542 буксиrovочные канатные дороги, 5 фуникулеров, 11 543 эскалатора (в том числе 347 — в метрополитенах), 4946 строительных подъемников и 3254 подъемника для инвалидов) (рис. 30).

По итогам перерегистрации ОПО, на которых используются подъемные сооружения, к IV классу опасности отнесено 49 608 объектов, что составляет 91 % от общего числа зарегистрированных ОПО с признаком опасности 2.3 «Использование стационарно установленных грузоподъемных механизмов, эскалаторов, канатных дорог, фуникулеров». 3343 объекта отнесено к III классу, 799 и 466 объектов, включающих подъемные сооружения, отнесены к II и I классам опасности соответственно (рис. 31).
Вследствие мировых интеграционных процессов доля техники иностранного производства постоянно увеличивается и на текущий момент на территории Российской Федерации эксплуатируется почти 131 тыс. ед. техники импортного производства, что составляет 17% от общего числа зарегистрированных в Ростехнадзоре подъемных сооружений (рис. 32).

В 2015 г. количество подъемных сооружений уменьшилось по сравнению с 2014 г. на 40 616 ед., данный факт во многом связан с проведенной территориальными органами Ростехнадзора работой по заполнению подсистемы КСИ «Реестр ТУ», в результате чего проведена актуализация имеющейся информации, исключено дублирование технических устройств, с учета были сняты грузоподъемные краны, зарегистрированные еще до вступления в силу в 1997 г. Федерального закона «О промышленной безопасности опасных производственных объектов» № 116-ФЗ и не включенные в состав опасных производственных объектов, а также грузоподъемные краны организаций, владельцев которых на сегодняшний день уже не существует.

Так, например, в 2015 г. по сравнению с 2014 г. уменьшение парка грузоподъемных кранов составило 37 451 единиц, подъемников (вышек) — 2597 единиц.

Изменение данных по лифтовому парку в 2014–2015 гг. связано с отменой с момента вступления в силу технического регламента Таможенного союза ТР ТС 011/2011 «Безопасность лифтов» нормативных актов, в которых были прописаны положения, устанавливающие порядок учета и ввода лифтов в эксплуатацию, в связи с чем учет лифтов был прекращен.

Сведения по изменению общего количества технических устройств в 2015 г. по сравнению с 2014 г. приведены в табл. 106.
Сведения по изменению общего количества технических устройств в 2015 г. по сравнению с 2014 г.

<table>
<thead>
<tr>
<th>Наименование технических устройств</th>
<th>Общее количество технических устройств в 2014 г.</th>
<th>Общее количество технических устройств в 2015 г.</th>
<th>Прирост, % (ед.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Краны</td>
<td>242 231</td>
<td>204 780</td>
<td>−15 % (37 451 ед.)</td>
</tr>
<tr>
<td>Подъемники (вышки)</td>
<td>25 815</td>
<td>23 218</td>
<td>−10 % (2597 ед.)</td>
</tr>
<tr>
<td>Лифты</td>
<td>529 662</td>
<td>527 567</td>
<td><−1 % (2095 ед.)</td>
</tr>
<tr>
<td>Подвесные канатные дороги</td>
<td>167</td>
<td>213</td>
<td>27,5 % (46 ед.)</td>
</tr>
<tr>
<td>Буксироночные канатные дороги</td>
<td>521</td>
<td>542</td>
<td>4 % (21 ед.)</td>
</tr>
<tr>
<td>Фуникилеры</td>
<td>2</td>
<td>5</td>
<td>150 % (3 ед.)</td>
</tr>
<tr>
<td>Эскалаторы</td>
<td>10 757</td>
<td>11 543</td>
<td>7,3 % (786 ед.)</td>
</tr>
<tr>
<td>Строительные подъемники</td>
<td>4442</td>
<td>4946</td>
<td>11,3 % (504 ед.)</td>
</tr>
<tr>
<td>Платформы подъемные для инвалидов</td>
<td>3085</td>
<td>3254</td>
<td>5,5 % (169 ед.)</td>
</tr>
<tr>
<td>Итого:</td>
<td>816 682</td>
<td>776 068</td>
<td>−5 % (40 614 ед.)</td>
</tr>
</tbody>
</table>

Следует отметить, что на уровень промышленной безопасности оказывают влияние технические, организационные и финансовые проблемы на поднадзорных предприятиях.

Основной проблемной причиной снижения уровня промышленной безопасности в области надзора за подъемными сооружениями является большое количество оборудования, отработавшего свой расчетный ресурс.

Сведения о среднем износе технических устройств по состоянию на 1 января 2016 г. приведены в табл. 107.

<table>
<thead>
<tr>
<th>Наименование технических устройств</th>
<th>Общее количество технических устройств, ед.</th>
<th>Отработало нормативный срок службы, ед.</th>
<th>Средний процент износа</th>
</tr>
</thead>
<tbody>
<tr>
<td>Грузоподъемные краны</td>
<td>204 780</td>
<td>140 915</td>
<td>68,8</td>
</tr>
<tr>
<td>Подъемники (вышки)</td>
<td>23 218</td>
<td>10 473</td>
<td>45,1</td>
</tr>
<tr>
<td>Лифты</td>
<td>527 567</td>
<td>150 173</td>
<td>28,5</td>
</tr>
<tr>
<td>Подвесные канатные дороги</td>
<td>213</td>
<td>29</td>
<td>13,6</td>
</tr>
<tr>
<td>Буксироночные канатные дороги</td>
<td>542</td>
<td>58</td>
<td>10,7</td>
</tr>
<tr>
<td>Фуникилеры</td>
<td>5</td>
<td>2</td>
<td>40</td>
</tr>
<tr>
<td>Эскалаторы</td>
<td>11 543</td>
<td>65</td>
<td>0,6</td>
</tr>
<tr>
<td>Строительные подъемники</td>
<td>4946</td>
<td>683</td>
<td>13,8</td>
</tr>
<tr>
<td>Платформы подъемные для инвалидов</td>
<td>3254</td>
<td>5</td>
<td>0,15</td>
</tr>
<tr>
<td>Итого:</td>
<td>776 068</td>
<td>302 403</td>
<td>39</td>
</tr>
</tbody>
</table>
В 2015 г. на опасных производственных объектах, поднадзорных Ростехнадзору, на которых используются подъемные сооружения (за исключением лифтов, платформ подъемных для инвалидов и эскалаторов вне пределов метрополитенов), произошло 53 аварии, что на 19 аварий (на 56 %) больше, чем в 2014 г., и 60 несчастных случаев со смертельным исходом, что на 9 несчастных случаев (на 18 %) больше, чем в 2014 г. Также возросло количество пострадавших, получивших в результате групповых несчастных случаев тяжелые травмы (в 2015 г. — 20 травмированных; в 2014 г. — 14).

При эксплуатации опасных объектов (лифтов, эскалаторов вне пределов метрополитенов, платформ подъемных для инвалидов) в 2015 г. зарегистрировано 9 аварий (8 — на лифтах, одна — на эскалаторе). По каждому факту аварии проведено техническое расследование ее причин.

Рост аварийности на поднадзорных Ростехнадзору объектах в 2015 г. по сравнению с 2014 г. отмечен в Центральном (+11), Северо-Западном (+5), Южном (+5), Приволжском (+1), Дальневосточном (+2) федеральных округах.

Увеличение количества несчастных случаев со смертельным исходом на поднадзорных Ростехнадзору объектах в 2015 г. зафиксировано на территориях Южно- го (+7), Приволжского (+2), Уральского (+1), Сибирского (+4) федеральных округов (табл. 108).

Таблица 108

<table>
<thead>
<tr>
<th>Федеральные округа Российской Федерации</th>
<th>Субъекты Российской Федерации</th>
<th>Аварии</th>
<th>Несчастные случаи</th>
</tr>
</thead>
<tbody>
<tr>
<td>Центральный федеральный округ (г. Москва)</td>
<td>5</td>
<td>16</td>
<td>14</td>
</tr>
<tr>
<td>Белгородская область</td>
<td>—</td>
<td>—</td>
<td>1</td>
</tr>
<tr>
<td>Брянская область</td>
<td>—</td>
<td>1</td>
<td>—</td>
</tr>
<tr>
<td>Воронежская область</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Липецкая область</td>
<td>—</td>
<td>1</td>
<td>—</td>
</tr>
<tr>
<td>Москва город</td>
<td>3</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>Московская область</td>
<td>1</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>Рязанская область</td>
<td>—</td>
<td>0</td>
<td>—</td>
</tr>
<tr>
<td>Смоленская область</td>
<td>—</td>
<td>—</td>
<td>1</td>
</tr>
<tr>
<td>Тверская область</td>
<td>—</td>
<td>1</td>
<td>—</td>
</tr>
<tr>
<td>Тульская область</td>
<td>—</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Северо-Западный федеральный округ (г. Санкт-Петербург)</td>
<td>2</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Архангельская область</td>
<td>—</td>
<td>1</td>
<td>—</td>
</tr>
<tr>
<td>Калининградская область</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Ленинградская область</td>
<td>—</td>
<td>—</td>
<td>1</td>
</tr>
<tr>
<td>Мурманская область</td>
<td>—</td>
<td>—</td>
<td>1</td>
</tr>
<tr>
<td>Новгородская область</td>
<td>1</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Республика Карелия</td>
<td>—</td>
<td>1</td>
<td>—</td>
</tr>
<tr>
<td>Республика Коми</td>
<td>—</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Санкт-Петербург город</td>
<td>—</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Федеральные округа Российской Федерации</td>
<td>Аварии 2014 г.</td>
<td>Аварии 2015 г.</td>
<td>Несчастные случаи 2014 г.</td>
</tr>
<tr>
<td>---</td>
<td>---------------</td>
<td>---------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Южный федеральный округ (г. Ростов-на-Дону)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Астраханская область</td>
<td>—</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Волгоградская область</td>
<td>4</td>
<td>1</td>
<td>—</td>
</tr>
<tr>
<td>Краснодарский край</td>
<td>1</td>
<td>4</td>
<td>—</td>
</tr>
<tr>
<td>Ростовская область</td>
<td>—</td>
<td>3</td>
<td>—</td>
</tr>
<tr>
<td>Северо-Кавказский федеральный округ (г. Пятигорск)</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Ставропольский край</td>
<td></td>
<td></td>
<td>—</td>
</tr>
<tr>
<td>Республика Северная Осетия — Алания</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Приволжский федеральный округ (г. Нижний Новгород)</td>
<td>10</td>
<td>11</td>
<td>8</td>
</tr>
<tr>
<td>Кировская область</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Нижегородская область</td>
<td>2</td>
<td>—</td>
<td>1</td>
</tr>
<tr>
<td>Оренбургская область</td>
<td>2</td>
<td>—</td>
<td>3</td>
</tr>
<tr>
<td>Пензенская область</td>
<td>1</td>
<td>—</td>
<td>1</td>
</tr>
<tr>
<td>Пермский край</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Республика Башкортостан</td>
<td>—</td>
<td>2</td>
<td>—</td>
</tr>
<tr>
<td>Республика Мариин Эл</td>
<td>1</td>
<td>1</td>
<td>—</td>
</tr>
<tr>
<td>Республика Татарстан</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Самарская область</td>
<td>—</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Саратовская область</td>
<td>—</td>
<td>1</td>
<td>—</td>
</tr>
<tr>
<td>Чувашская Республика</td>
<td>—</td>
<td>1</td>
<td>—</td>
</tr>
<tr>
<td>Уральский федеральный округ (г. Екатеринбург)</td>
<td>7</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>Свердловская область</td>
<td>3</td>
<td>—</td>
<td>4</td>
</tr>
<tr>
<td>Тюменская область</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Челябинская область</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Сибирский федеральный округ (г. Новосибирск)</td>
<td>6</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>Иркутская область</td>
<td>—</td>
<td>—</td>
<td>2</td>
</tr>
<tr>
<td>Кемеровская область</td>
<td>—</td>
<td>3</td>
<td>—</td>
</tr>
<tr>
<td>Красноярский край</td>
<td>3</td>
<td>—</td>
<td>1</td>
</tr>
<tr>
<td>Новосибирская область</td>
<td>2</td>
<td>—</td>
<td>1</td>
</tr>
<tr>
<td>Омская область</td>
<td>—</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Республика Бурятия</td>
<td>1</td>
<td>—</td>
<td>2</td>
</tr>
<tr>
<td>Забайкальский край</td>
<td>—</td>
<td>1</td>
<td>—</td>
</tr>
<tr>
<td>Дальневосточный федеральный округ (г. Хабаровск)</td>
<td>2</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Амурская область</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Приморский край</td>
<td>—</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Республика Саха (Якутия)</td>
<td>1</td>
<td>—</td>
<td>3</td>
</tr>
<tr>
<td>Хабаровский край</td>
<td>—</td>
<td>1</td>
<td>—</td>
</tr>
<tr>
<td>Крымский федеральный округ</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Итого по России:</td>
<td>38</td>
<td>59</td>
<td>51</td>
</tr>
<tr>
<td>(+) рост/(-) снижение:</td>
<td>+21</td>
<td></td>
<td>+7</td>
</tr>
</tbody>
</table>

© Оформление. ЗАО НТЦ ПБ, 2016
Рост аварийности на поднадзорных Ростехнадзору объектах в 2015 г. по сравнению с 2014 г. отмечен в Центральном (+10), Северо-Западном (+6), Южном (+4), Приволжском (+3), Дальневосточном (+2) федеральных округах.

Увеличение количества несчастных случаев со смертельным исходом на поднадзорных Ростехнадзору объектах в 2015 г. зафиксировано на территориях Северо-Западного (+2), Южного (+6), Приволжского (+2), Сибирского (+2) федеральных округов (tabl. 109, рис. 34–35).

Таблица 109
Обобщенные данные об авариях и несчастных случаях со смертельным исходом на поднадзорных объектах за 12 месяцев 2014 и 2015 гг.
(по территориальным управлением Ростехнадзора)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Центральный федеральный округ (г. Москва)</td>
<td>6</td>
<td>16</td>
<td>15</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Межрегиональное технологическое управление (г. Москва, Чукотский АО, г. Норильск)</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Центральное управление (Московская область, Смоленская область, Тверская область, Калининградская область, Ярославская область, Костромская область, Ивановская область, Владимирская область)</td>
<td>2</td>
<td>8</td>
<td>10</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Верхне-Донское управление (Воронежская область, Липецкая область, Тамбовская область, Курская область, Белгородская область)</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Приокское управление (Тульская область, Орловская область, Калужская область, Рязанская область, Брянская область)</td>
<td>—</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Северо-Западный федеральный округ (г. Санкт-Петербург)</td>
<td>1</td>
<td>7</td>
<td>6</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Северо-Западное управление (г. Санкт-Петербург, Ленинградская область, Псковская область, Новгородская область, Мурманская область, Республика Карелия, Вологодская область, Архангельская область)</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Печорское управление (Республика Коми, Ненецкий АО)</td>
<td>—</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Южный федеральный округ (г. Ростов-на-Дону)</td>
<td>6</td>
<td>10</td>
<td>2</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Северо-Кавказское управление (Краснодарский край, Республика Адыгея, Ростовская область)</td>
<td>1</td>
<td>6</td>
<td>—</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>--------------------------------</td>
<td>--------</td>
<td>--------------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>Нижне-Волжское управление</td>
<td>(Волгоградская область, Астраханская область, Республика Калмыкия, Саратовская область, Пензенская область)</td>
<td>5</td>
<td>4</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Северо-Кавказский федеральный округ</td>
<td>(г. Пятигорск)</td>
<td>1</td>
<td>–</td>
<td>2</td>
<td>–</td>
</tr>
<tr>
<td>Кавказское управление</td>
<td>(Ставропольский край, Карачаево-Черкесская Республика, Республика Северная Осетия — Алания, Кабардино-Балкарская Республика, Чеченская Республика, Республика Дагестан, Республика Ингушетия)</td>
<td>1</td>
<td>–</td>
<td>2</td>
<td>–</td>
</tr>
<tr>
<td>Приволжский федеральный округ</td>
<td>(г. Нижний Новгород)</td>
<td>9</td>
<td>12</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>Западно-Уральское управление</td>
<td>(Пермский край, Удмуртская Республика, Кировская область, Республика Башкортостан, Оренбургская область)</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Приволжское управление</td>
<td>(Республика Татарстан, Республика Марий Эл, Чувашская Республика)</td>
<td>4</td>
<td>5</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Средне-Поволжское управление</td>
<td>(Самарская область, Ульяновская область)</td>
<td>–</td>
<td>4</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Волго-Окское управление</td>
<td>(Нижегородская область, Республика Мордовия)</td>
<td>2</td>
<td>–</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Уральский федеральный округ</td>
<td>(г. Екатеринбург)</td>
<td>7</td>
<td>5</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Северо-Уральское управление</td>
<td>(Тюменская область, Ханты-Мансийский АО, Ямало-Ненецкий АО)</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Уральское управление</td>
<td>(Свердловская область, Челябинская область, Курганская область)</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Сибирский федеральный округ</td>
<td>(г. Новосибирск)</td>
<td>6</td>
<td>5</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>Сибирское управление</td>
<td>(Кемеровская область, Алтайский край, Новосибирская область, Омская область, Томская область)</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Забайкальское управление</td>
<td>(Забайкальский край, Республика Бурятия)</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Енисейское управление</td>
<td>(Красноярский край (без г. Норильска и прилежащих к нему территорий), Респ. Тыва, Респ. Хакасия, Иркутская область)</td>
<td>3</td>
<td>–</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Федеральные округа Российской Федерации</td>
<td>Аварии</td>
<td>Несчастные случаи</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>--------</td>
<td>-------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Дальневосточный федеральный округ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(г. Хабаровск)</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Дальневосточное управление</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Хабаровский край, Приморский край,</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Амурская область, Еврейская АО,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Камчатский край)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Сахалинское управление</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Сахалинская область)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Северо-Восточное управление</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Магаданская область)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ленское управление</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Республика Саха (Якутия))</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Крымский федеральный округ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Крымское управление</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Итого по Ростехнадзору: 38 59 51 58
(+/-) рост/(-) снижение: — +21 — +7
Крымтехнадзор — 2 — 1
Мосгосстройнадзор — 1 — 1

Рис. 34. Количество происшедших в 2015 г. аварий по федеральным округам

Рис. 35. Количество происшедших в 2015 г. несчастных случаев со смертельным исходом по федеральным округам

Экономический ущерб от аварий в 2015 г. составил 78 млн руб. (в 2014 г. — 50 млн руб.).
На рис. 34–35 отчетливо видна неравномерность распределения по федеральным округам как аварий, так и количества несчастных случаев со смертельным исходом, что обусловлено в том числе распределением используемых на ОПО подъемных сооружений по субъектам Российской Федерации.

Как показывает статистика, в период 2013–2015 гг. наблюдается рост аварийности и смертельного травматизма при эксплуатации ПС на ОПО. Переход к риск-ориентированному надзору за соблюдением требований промышленной безопасности при эксплуатации ОПО с ПС (по итогам проведенной в 2013 г. перерегистрации ОПО с присвоением класса опасности 92 % ОПО с ПС отнесены к IV классу опасности), а также изменения законодательства в части вывода лифтов, платформ подъемных для инвалидов и эскалаторов вне метрополитенов из категории ОПО привели к уменьшению числа плановых проверок, проводимых Ростехнадзором в отношении организаций, эксплуатирующих ОПО.

В настоящее время опасные производственные объекты, на которых используются стационарно установленные грузоподъемные механизмы, в том числе и башенные кranы, в соответствии с подпунктом 2 приложения 2 к Федеральному закону от 21 июля 1997 г. № 116-ФЗ «О промышленной безопасности опасных производственных объектов» отнесены к опасным производственным объектам IV класса опасности (ограниченные производственные объекты низкой опасности). Действующим на территории Российской Федерации законодательством не предусмотрено проведение плановых проверок юридических лиц и индивидуальных предпринимателей, эксплуатирующих опасные производственные объекты IV класса опасности.

Рис. 36. Динамика аварийности и смертельного травматизма при эксплуатации подъемных сооружений
В 2015 г. также возросло количество групповых несчастных случаев (несчастных случаев, в результате которых получили травмы, в том числе несовместимые с жизнью, два и более человек). Согласно статистическим данным в 2013 г. зарегистрировано 9 групповых несчастных случаев, в которых были травмированы 24 человека, в 2014 г. количество групповых несчастных случаев выросло до 13 с общим числом травмированных 29 человек, а в 2015 г. зарегистрировано 15 групповых несчастных случаев, в результате которых травмы различной степени тяжести получили 35 человек (в том числе 15 человек погибли) (рис. 37).

Из 15 человек, погибших в групповых несчастных случаях в минувшем году, 4 погибли при падении с фасадного подъемника, 6 — в результате групповых несчастных случаев, происшедших при эксплуатации башенных кранов.

22 июля 2015 г. (г. Уфа) при подъеме пяти человек на фасадном подъемнике китайского производства ZLP630 произошло резкое опускание одной стороны люльки подъемника, в результате четырех работника сорвались вниз. Один работник успел ухватиться за трос, запрыгнул на балкон и остался жив, трое получили смертельные травмы, еще один скончался в больнице.

Причины группового несчастного случая:
- эксплуатация подъемника с измененной конструкцией;
- срезание зубьев на червячном колесе механизма приводной лебедки;

Рис. 38. Групповой несчастный случай при эксплуатации фасадного подъемника ZPL630
отсутствие производственного контроля за соблюдением требований промышленной безопасности;
не организованы технические освидетельствования и ремонт фасадного подъемника.

Работники не пользовались страховочными поясами (привязями).
Наибольшее количество произошедших в 2015 г. аварий на ОПО с ПС (43 аварии, что составляет 81 % от общего количества) произошло при эксплуатации грузоподъемных кранов, 7 аварий (13 % от общего количества) — при эксплуатации подъемников (вышек) и 3 аварии (6 % от общего количества) строительных подъемников (рис. 39).
Из 43 аварий при эксплуатации грузоподъемных кранов 20 аварий (46,5 %) произошло при эксплуатации башенных кранов, 11 аварий (25,5 %) при эксплуатации гусеничных кранов, 8 (18,5 %) и 4 (9,5 %) — при использовании автомобильных и козловых кранов соответственно (рис. 40).

Анализ зарегистрированных в Ростехнадзоре аварий при эксплуатации грузоподъемных кранов в 2014 и 2015 гг. показывает рост числа таких аварий при эксплуатации козловых кранов (прирост на 2 аварии), автомобильных кранов (прирост на 2 аварии), гусеничных кранов (прирост на 4 аварии), значительно увеличилось количество аварий при эксплуатации башенных кранов (прирост на 7 аварий).
Кроме этого зафиксированы:
avарии на подъемных сооружениях, которые не были зарегистрированы в Ростехнадзоре: 2 аварии при эксплуатации башенных кранов, 1 авария — при использовании козлового крана;
аварии на объектах, надзор за которыми Ростехнадзором передан в соответствие с соответствующими Соглашениями Правительству Москвы и Совету министров Республики Крым: 1 авария — при эксплуатации башенного крана, 1 авария — при эксплуатации автомобильного крана и 1 авария — при эксплуатации гусеничного крана (рис. 41).

Рис. 41. Случаи смертельного травматизма при эксплуатации грузоподъемных кранов в 2014 и 2015 гг.

При уменьшении количества несчастных случаев со смертельным исходом в 2015 г. по сравнению с 2014 г. при эксплуатации автомобильных и мостовых кранов на 9 и 2 случая соответственно выросло количество случаев смертельного травматизма при эксплуатации козловых кранов (на 2 случая), гусеничных кранов (на один случай), кранов-манипуляторов (на один случай) и портальных кранов (на один случай). Так же, как и число аварий, в 2015 г. в сравнении с 2014 г. существенно выросло количество несчастных случаев со смертельным исходом при эксплуатации башенных кранов (на 7 случаев, что составляет увеличение на 64 %) (рис. 42).

При соотнесении числа эксплуатируемых на опасных производственных объектах подъемных сооружений с количеством произошедших при их эксплуатации несчастных случаев со смертельным исходом показатель коэффициент смертельного травматизма (число погибших, приходящееся на тысячу эксплуатируемых технических устройств).

В 2015 г. наблюдается увеличение значения указанного коэффициента при эксплуатации грузоподъемных кранов на 0,03 до значения 0,193, при этом в отношении подъемников (вышек) значение указанного коэффициента составляет 0,27, что является следствием большого числа нарушений требований промышленной безопасности при эксплуатации подъемников. В частности, подъемники (вышки) нередко передаются в аренду без назначения, в соответствии с федеральными нормами и правилами, лиц, ответственных за промышленную безопасность при эксплуатации подъемного сооружения, что ведет к высокому числу случаев смертельного травматизма при небольшом количестве технических устройств в сравнении с грузоподъемными кранами.
Рис. 42. Случаи смертельного травматизма при эксплуатации подъемных сооружений в 2010–2015 гг.

Коэффициент смертельного травматизма на 1000 единиц техники в 2015 г. составляет:
- грузоподъемные кranы 0,193;
- подъемники (вышки) 0,27;
- строительные подъемники 1,0.

Большое число несчастных случаев со смертельным исходом при эксплуатации строительных подъемников в 2015 г. объясняется уже упомянутым групповым несчастным случаем в г. Уфе, когда погибло сразу 4 человека, в результате чего количество погибших при эксплуатации строительных подъемников в 2015 г. составило 5 человек при 1 погибшем в 2014 г. (рис. 43).

Рис. 43. Распределение числа погибших по видам подъемных сооружений.
Сравнительные показатели аварийности и травматизма при эксплуатации подъемных сооружений (за исключением лифтов, эскалаторов, платформ подъемных для инвалидов) с информацией по башенным кранам

<table>
<thead>
<tr>
<th>Период</th>
<th>2014 г.</th>
<th>2015 г.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Всего</td>
<td>при эксплуатации башенных кранов (% от общего кол-ва случаев)</td>
</tr>
<tr>
<td>Аварии</td>
<td>34</td>
<td>12 (35 %)</td>
</tr>
<tr>
<td></td>
<td>51</td>
<td>11 (21 %)</td>
</tr>
</tbody>
</table>

Примечание. Показатели смертельного травматизма приводятся в соответствии с установленной формой отчетности (без учета погибших третьих лиц и лиц, не состоявших в трудовых отношениях с владельцем опасного производственного объекта или с организацией, направившей их для выполнения определенного вида работ на опасный производственный объект).

Отмечено значительное увеличение количества аварий и несчастных случаев в 2015 г. при эксплуатации башенных кранов. Так, например:
прирост числа аварий на башенных кранах в 2015 г. по сравнению с 2014 г. составляет 58 % при приросте числа аварий, произошедших на других подъемных сооружениях, на 41 %;
прирост числа погибших при эксплуатации башенных кранов в 2015 г. по сравнению с 2014 г. составляет 64 % при равном числе погибших в результате несчастных случаев при эксплуатации других видов подъемных сооружений в 2014 и 2015 гг. (рис. 44).

Рис. 44. Рост числа аварий, случаев смертельного и тяжелого травматизма при эксплуатации башенных кранов в 2014 и 2015 гг.

Кроме того, значительно возросло количество полученных в групповых несчастных случаях тяжелых травм. В 2015 г. при таких несчастных случаях было зафиксировано 10 случаев получения пострадавшими тя-
желых травм, что на порядок превышает количество травмированных в результате групповых несчастных случаев в 2014 г. (зафиксирован один случай получения пострадавшим в результате группового несчастного случая тяжелой травмы). Одновременно с ростом количества пострадавших в результате групповых несчастных случаев при эксплуатации башенных кранов в 2015 г. наблюдается снижение на 21 % числа тяжелых травм, полученных при эксплуатации других видов подъемных сооружений, в сравнении с 2014 г.

В 2015 г. вызвала общественный резонанс череда аварий при эксплуатации башенных кранов.

Так, за период с 26 по 28 октября 2015 г. произошло пять аварий с башенными кранами на объектах, поднадзорных Ростехнадзору. В результате некоторых из них зафиксированы несчастные случаи.

Всего при эксплуатации башенных кранов погибли 5 человек (один из них ребенок) и 4 человека получили тяжелые травмы (в том числе также один ребенок). При этом в аварии, произошедшей 26.10.2015 с башенным краном в г. Омске, из 4 по- гибших и 2 человек, получивших тяжелые травмы, только один пострадавший был участником производственного процесса с использованием крана. Четверо погибших и один получивший тяжелую травму находились вне пределов строительной площадки (рис. 46–47).

Рис. 45. Число погибших при авариях и несчастных случаях при эксплуатации башенных кранов в 2015 г.

Рис. 46. Динамика смертельного травматизма при эксплуатации подъемных сооружений (за исключением лифтов, платформ подъемных для инвалидов и эскалаторов вне метрополитенов) за 2006–2015 гг. с приведением количества несчастных случаев со смертельным исходом при эксплуатации башенных кранов за последние пять лет
Годовой отчет о деятельности Федеральной службы

Рис. 47. Погибшие третьи лица при несчастных случаях на стационарно установленных грузоподъемных механизмах с уточнением по башенным кранам

Отмечено значительное повышение количества аварий и несчастных случаев при эксплуатации башенных кранов. Согласно установленным требованиям промышленной безопасности практически все башенные краны вводятся в работу без участия представителя Ростехнадзора. Низкая квалификация специалистов и персонала, а также тенденция к снижению организациями затрат на обеспечение промышленной безопасности приводят к пуску в работу башенных кранов с нарушениями требований промышленной безопасности. Кроме того, как правило, башенные краны устанавливаются для возведения объектов в границах населенных пунктов в местах, где возможно скопление людей, в результате чего в 2015 г. при эксплуатации башенных кранов пострадало 6 человек, не связанных с производством (рис. 48–49).

Рис. 48. Динамика аварийности при эксплуатации стационарно установленных грузоподъемных механизмов за 2006—2015 гг. с приведением количества аварий с башенными кранами за последние пять лет
Наибольшее увеличение числа аварий и случаев получения смертельных и тяжелых травм произошло в 2012 и 2015 гг.

Как видно на диаграмме, изменение количества аварий и несчастных случаев со смертельным исходом при эксплуатации подъемных сооружений зачастую происходит неравномерно в виде скачков (на большие значения). Уменьшение количества плановых проверок организаций, эксплуатирующих ПС, в связи с перерегистрацией ОПО и отнесением 92 % ОПО с ПС к IV классу создало видимость отсутствия контроля за такими объектами. В этих условиях возникает стремление владельцев опасных производственных объектов снизить затраты на обеспечение промышленной безопасности на эксплуатируемых ими объектах. Подтверждением этого является тот факт, что, как правило, авариям на грузоподъемных кранах предшествовало отсутствие организованного надлежащим образом в соответствии с требованиями, установленными ФНП, производственного контроля за соблюдением требований промышленной безопасности на ОПО.

На учет в Ростехнадзоре поставлено 15 081 башенный кран отечественного производства и 4338 башенных кранов импортного производства, из 20 аварий, произошедших при эксплуатации башенных кранов, 16 произошли при эксплуатации отечественных кранов, то есть коэффициент аварийности на 1000 башенных кранов отечественного и импортного производства составляет соответственно 0,94 и 1,08.

21 мая 2015 г. в г. Кемерово при осуществлении строительно-монтажных работ в результате сильного порыва ветра произошло падение башенного крана КБ-408.21-02 (2006 г. выпуска, изготовлен ОАО «Нязепетровский краностроительный завод», г. Нязепетровск, Челябинская область, Россия). Погиб машинист крана (рис. 50).

Технические причины аварии:
- эксплуатация ограничителя грузоподъемности (грузового момента) без проверки его работоспособности и подтверждения соответствия;
- неисправность тормоза механизма передвижения башенного крана; несоответствие тупиковых упоров требованиям паспорта и руководства по эксплуатации.
Организационные причины аварии:
работа на кране при скорости ветра, превышающей предельно допустимую по паспорту;
кран не был переведен в нерабочее состояние на предусмотренном месте для стоянки;
не организован производственный контроль соблюдения требований промышленной безопасности;
не заключен договор с метеослужбой на предоставление информации о возникновении метеорологических условий.

26 октября 2015 г. в г. Омске на строительной площадке торгово-выставочного комплекса башенный кран КБ-403А осуществлял перемещение пустой бадьи для бетона от площадки бетонирования к автобетоносмесителю. При перемещении башенного крана по подкрановому рельсовому пути были сбиты тупиковые упоры, произошел съезд крана с рельсового пути с его последующим падением. В результате погибли 4 человека и 2 получили тяжелые травмы. 5 из 6 пострадавших с производственным процессом не связаны (рис. 51).

Технические причины аварии:
неисправность тормоза механизма передвижения крана;
несоответствие подкранового пути и тупиковых упоров требованиям руководства (инструкции) по эксплуатации подъемного сооружения и ФНП.
Организационные причины аварии:
в эксплуатирующей организации не утверждены должностные инструкции и не назначены лица, ответственные за промышленную безопасность, из числа аттестованных специалистов;
не организован и не осуществлялся производственный контроль за соблюдением требований промышленной безопасности; не проведены экспертизы промышленной безопасности башенного крана, отработавшего нормативный срок службы, а также его испытания и освидетельствование в установленные сроки;
не обеспечено содержание крана и рельсового пути в работоспособном состоянии; осуществление работ в отсутствие проекта производства работ подъемными сооружениями.

В ходе проведения технических расследований подобных аварий и несчастных случаев помимо организационных причин выявляются также несоблюдение требований законодательства в области технического регулирования и полноты информации, отражаемой в руководствах по эксплуатации подъемных сооружений. В подобных случаях Ростехнадзором проводится дополнительная информационно-методическая работа, в ходе которой об указанных недостатках в проектировании, изготовлении и сертификации кранов информировались территориальные управления Ростехнадзора и организации, эксплуатирующие поднадзорные опасные производственные объекты, на которых используются указанные подъемные сооружения. Также о выявленных недостатках проектирования, изготовления и сертификации указанных кранов Ростехнадзором направлены письма в Министерство промышленности и торговли Российской Федерации для принятия Росстандартом мер в соответствии со своей компетенцией.

Рис. 52. Смертность при эксплуатации подъемных сооружений (за исключением лифтов, эскалаторов, платформ подъемных для инвалидов) с распределением по видам происшествий и статистикой по башенным кранам
Распределение аварий и случаев смертельного травматизма, произошедших в 2015 г. на опасных производственных объектах при эксплуатации подъемных сооружений по классам опасности объектов

<table>
<thead>
<tr>
<th></th>
<th>I класс опасности</th>
<th>II класс опасности</th>
<th>III класс опасности</th>
<th>IV класс опасности</th>
</tr>
</thead>
<tbody>
<tr>
<td>Аварии</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>50</td>
</tr>
<tr>
<td>Смертельные несчастные случаи</td>
<td>0</td>
<td>1</td>
<td>7</td>
<td>50</td>
</tr>
</tbody>
</table>

Характерным является тот факт, что аварии при эксплуатации подъемных сооружений произошли на опасных производственных объектах IV класса опасности. В отношении организаций, эксплуатирующих такие опасные производственные объекты, Ростехнадзором в соответствии с действующим законодательством не проводятся плановые выездные проверки. Из этого следует, что проверки, проводимые в отношении организаций, эксплуатирующих опасные производственные объекты II и III классов опасности, способствуют обеспечению содержания ПС, эксплуатируемых на таких ОПО, в работоспособном состоянии, вследствие чего снижается аварийность. Закономерным является вывод, что отнесение опасных производственных объектов, на которых эксплуатируются башенные краны, к III классу опасности также может позволить значительно сократить число аварий и смертельных несчастных случаев на них (рис. 53).

Среди причин аварий и несчастных случаев стали преобладать такие факторы, как отсутствие производственного контроля за соблюдением требований промышленной безопасности со стороны руководства организации — владельца опасного производственного объекта и лиц, ответственных за содержание подъемного сооружения в работоспособном состоянии, за безопасное производство работ с применением подъемного сооружения и ответственных за осуществление производственного контроля при эксплуатации подъемного сооружения;

привлечение к производству работ персонала, не имеющего необходимой квалификации;

отсутствие на объекте проектов производства работ, правил производства работ, должностных и производственных инструкций.

Технические причины аварийности и смертельного травматизма при эксплуатации подъемных сооружений, как правило, являются следствием несвоевременного проведения плановых осмотров, ремонтов и технических освидетельствований технических устройств.

Отдельно нужно отметить такие причины аварий и несчастных случаев, как низкий уровень трудовой дисциплины и нарушение технологии производства работ, привлечение к производству работ

Рис. 53. Информация о подъемных сооружениях, при эксплуатации которых на опасных производственных объектах IV класса опасности произошли случаи смертельного травматизма
персонала, не обладающего необходимой квалификацией, высокая степень износа эксплуатируемых подъемных сооружений, а также передачу в аренду кранов с нарушением установленных законодательством требований по регистрации ОПО арендатором и, следовательно, непринятие мер по организации и осуществлению производственного контроля.

По статистике за 2015 г. 65 % всех аварий при эксплуатации подъемных сооружений (за исключением лифтов, эскалаторов и платформ подъемных для инвалидов) произошли при эксплуатации ПС, отработавших нормативный срок службы. В случае с башенными кранами 69 % аварий произошли при эксплуатации ПС, отработавших нормативный срок службы; 100 % аварий при эксплуатации гусеничных кранов произошли при эксплуатации ПС, отработавших нормативный срок службы; 75 % аварий при эксплуатации козловых кранов и подъемников (вышек) произошли при эксплуатации ПС, отработавших нормативный срок службы (рис. 54).

Рис. 54. Процентные показатели аварийности при эксплуатации подъемных сооружений (за исключением лифтов, эскалаторов и платформ подъемных для инвалидов) в привязке к нормативному сроку службы технический устройств

Стоит обратить внимание на относительно малый процент аварий при эксплуатации автомобильных кранов, отработавших нормативный срок службы (14 %), по отношению к общему числу аварий с такими кранами, что позволяет сделать вывод о преобладании причин организационного характера, а именно: недостаточный производственный контроль и нарушение трудовой дисциплины при эксплуатации автомобильных кранов (нередки факты эксплуатации автомобильных кранов физическими лицами, что действующим законодательством запрещено). Пребывание автомобильных кранов в руках физических лиц также часто ведет к несоблюдению требований по содержанию подъемных сооружений в работоспособном состоянии. В то же время именно в этом причина столь высокого процента аварий на автогидроподъемниках, отработавших нормативный срок службы, — физические лица редко следят за их содержанием в работоспособном состоянии, иногда попросту не зная норм закона.
24 октября 2015 г. в г. Евпатория в результате обрыва стрелового каната при разгруженных грузо-погрузочных работах произошло падение стрелы грузоподъемного гусеничного крана МКГ-25 БР. В результате падения стрелы произошло повреждение автомобиля (рис. 55).

Рис. 55. Падение стрелы грузоподъемного гусеничного крана МКГ-25 БР в результате обрыва стрелового каната в г. Евпатория

* По информации из СМИ и данным, предоставленным НССО и НЛС, в 2013 г. при авариях на лифтах погибло 12 человек.
** По информации из СМИ и данным, предоставленным НССО и НЛС, в 2014 г. при авариях на лифтах погибло 14 человек (в том числе в авариях, технические расследования которых проводились Ростехнадзором).

Рис. 56. Данные о количестве погибших в авариях на лифтах за 1997–2015 гг.

После вступления в силу Федерального закона от 4 марта 2013 г. № 22-ФЗ и исключения лифтов из категории опасных производственных объектов Ростехнадзором не проводились расследования аварий на лифтах и не велся их учет.
23 августа 2014 г. вступило в силу постановление Правительства Российской Федерации № 848 «Об утверждении Правил проведения технических расследований..."
причин аварий на опасных объектах — лифтах, подъемных платформах для инвалидов, эскалаторах (за исключением эскалаторов в метрополитенах)», в соответствии с которым по каждому факту возникновения аварии на опасном объекте, в результате которой был причинен вред жизни, здоровью или имуществу потерпевших, должно осуществляться техническое расследование ее причин.

Указанными Правилами предусмотрено два вида аварий на опасных объектах: авария на опасном объекте с причинением вреда жизни или здоровью потерпевших (техническое расследование причин проводится Ростехнадзором); авария на опасном объекте с причинением вреда только имуществу потерпевших (техническое расследование причин проводится владельцем опасного объекта без участия представителя Ростехнадзора).

* По информации из СМИ и данных, предоставленных НССО и НЛС, в 2013 г. при авариях на лифтах погибло 12 человек.

** По информации из СМИ и данных, предоставленных НССО и НЛС, в 2014 г. при авариях на лифтах погибло 14 человек (в том числе в авариях, технические расследования которых проводились Ростехнадзором).

Рис. 57. Количество погибших в авариях на лифтах в 2013–2015 гг.

После принятия постановления Правительства Российской Федерации от 23 августа 2014 г. № 848 за 2014 г. территориальными органами Ростехнадзора было организовано проведение расследования причин 4 аварий на лифтах, в которых пострадали 4 человека (3 человека погибло, один из которых был работником обслуживающей организации, один человек был тяжело травмирован) (рис. 58).

В 2015 г. в авариях на лифтах пострадало 8 человек (4 человека погибло, один из которых также был работником обслуживающей организации, 4 человека получили тяжелые травмы).

14 марта 2015 г. в г. Уфе при закатывании инвалидной коляски с пациентом в кабину лифта произошло самопроизвольное движение кабины вверх при открытых дверях шахты. Пациент выпал из инвалидной коляски в шахту лифта, от полученных травм скончался в больнице.

15 октября 2015 г. в г. Магнитогорске при движении лифта с находившимися в нем двумя пассажирами с четвертого этажа на первый кабина вверх при открытых дверях шахты. Пассажир выпал из инвалидной коляски в шахту лифта, от полученных травм скончался в больнице.
крышей кабины. Женщина с тяжелыми травмами спины и грудной клетки доставлена в больницу.

19 декабря 2015 г. в г. Москве при посадке в кабину лифта женщины с коляской, в которой находился ребенок, произошло неконтролируемое движение кабины лифта вниз с открытой дверью кабины, что привело к зажатию коляски, находившейся в проеме, между потолком кабины и порогом шахты лифта. Ребенок погиб.

Причинами аварий на лифтах и эскалаторах являются привлечение к эксплуатации и обслуживанию технических устройств неквалифицированного персонала, недостаточный контроль за безопасной эксплуатацией со стороны ответственных лиц, отсутствие контроля за проведением технического обслуживания и ремонта лифтов и эскалаторов.

Рис. 58. Статистика аварий на опасных объектах (лифтах, эскалаторах вне пределов метрополитенов, платформах подъемных для инвалидов), расследованных Ростехнадзором в установленном порядке

Примечание. Приведены данные с даты вступления в силу постановления Правительства Российской Федерации от 23.08.2014 № 848.

При этом в 2015 г. в авариях на лифтах погибло 4 человека и 4 человека получили тяжелые травмы. При аварии на эскалаторе в 2015 г. один человек получил тяжелую травму. В большинстве случаев при авариях на лифтах погибают и получают травмы лица, не имеющие отношения к эксплуатирующей организации — работники сторонних организаций, посетители жилых и административных зданий.

В настоящее время безопасность эксплуатации лифтов обеспечивается Ростехнадзором в рамках осуществления государственного контроля (надзора) за соблюдением обязательных требований, установленных техническим регламентом Таможенного союза «Безопасность лифтов» ТР ТС 011/2011 в отношении лифтов и устройств безопасности лифтов на стадии эксплуатации. При этом очевидно, что ТР ТС 011/2011 не устанавливает требования, выполнение которых обеспечивало бы безопасное использование и содержание лифтов, а также обслуживание лифтов персоналом, обладающим необходимой для этого квалификацией.

Вследствие изменений законодательства Российской Федерации в области промышленной безопасности в части невозможности осуществления плановых прове-
рок в отношении опасных производственных объектов IV класса опасности существенно изменились основные показатели деятельности территориальных органов Ростехнадзора в 2014—2015 гг. (табл. 112).

Таблица 112
Основные показатели деятельности территориальных органов Ростехнадзора в 2015 г.

<table>
<thead>
<tr>
<th>Показатели (2015 год)</th>
<th>Надзор (контроль) в области промышленной безопасности</th>
<th>Надзор (контроль) за лифтами, эскалаторами (вне метрополитенов) и платформами подъемными для инвалидов</th>
</tr>
</thead>
<tbody>
<tr>
<td>Общее количество проведенных проверок, из них:</td>
<td>2988</td>
<td>10 764</td>
</tr>
<tr>
<td>плановые</td>
<td>663</td>
<td>6718</td>
</tr>
<tr>
<td>внеплановые</td>
<td>2247</td>
<td>4046</td>
</tr>
<tr>
<td>в рамках режима постоянного государственного надзора</td>
<td>78</td>
<td>—</td>
</tr>
<tr>
<td>Общее количество проверок, по итогам проведения которых выявлены правонарушения</td>
<td>1322</td>
<td>5690</td>
</tr>
<tr>
<td>Выявлено правонарушений, всего</td>
<td>10936</td>
<td>48722</td>
</tr>
<tr>
<td>Общее число юр. лиц, ИП, в отношении которых проведены проверки</td>
<td>2281</td>
<td>8289</td>
</tr>
<tr>
<td>Общее количество юр. лиц, ИП, в ходе проведения проверок в отношении которых выявлены правонарушения</td>
<td>1232</td>
<td>5563</td>
</tr>
<tr>
<td>Общее количество проверок, по итогам которых по факту выявленных нарушений наложены административные наказания</td>
<td>1019</td>
<td>439</td>
</tr>
<tr>
<td>Общее количество административных наказаний, наложенных по итогам проверок</td>
<td>2942</td>
<td>488</td>
</tr>
<tr>
<td>В том числе:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>предупреждение</td>
<td>179</td>
<td>20</td>
</tr>
<tr>
<td>административное приостановление деятельности</td>
<td>147</td>
<td>—</td>
</tr>
<tr>
<td>административный штраф</td>
<td>2616</td>
<td>468</td>
</tr>
<tr>
<td>Общая сумма наложенных административных штрафов, руб.</td>
<td>139 554 000</td>
<td>11 660 400</td>
</tr>
</tbody>
</table>

Так, в 2015 г. инспекторами территориальных органов проведено 2988 проверок поднадзорных организаций, осуществляющих деятельность в области промышленной безопасности, из них 663 плановых, 2247 внеплановых и 78 проверок, проведенных в рамках режима постоянного государственного надзора.

По сравнению с 2014 г. количество проведенных проверок в 2015 г. уменьшилось.

В ходе проведения в 2015 г. проверок выявлено 10 936 нарушений требований нормативных правовых актов в области промышленной безопасности. Нарушения были выявлены в 1232 из 2281 проверенной организации (54 %).

За допущенные нарушения наложено 2942 административных наказания, в том числе:

2616 административных штрафов на общую сумму 139 554 тыс. руб. (взыскано 51 % от общего количества наложенных штрафов);
147 административных приостановлений деятельности;
179 предупреждений.
В сравнении с итогами 2014 г. количество проверок по промышленной безопасности снизилось почти вдвое — на 43 %, при этом количество административных наказаний увеличилось на 25 %.

В рамках осуществления государственного контроля (надзора) за лифтами, эскалаторами (вне метрополитенов) и платформами подъемными для инвалидов в 2015 г. инспекторами территориальных органов проведено 10 764 проверки поднадзорных организаций, из них 6718 плановых и 4046 внеплановых.

В ходе проведения проверок выявлено 48 722 нарушений обязательных требований. Нарушения были выявлены в 5563 из 8289 проверенных организаций (67 %).

За допущенные нарушения наложено 488 административных наказаний, в том числе:

- 468 административный штрафов на общую сумму 11 660,4 тыс. руб. (взыскано 60 % от общего количества наложенных штрафов);
- 20 предупреждений.

Внеплановые проверки организаций, эксплуатирующих платформы подъемные для инвалидов и эскалаторов (за исключением эскалаторов в метрополитенах), проводились в соответствии с требованиями Федерального закона от 26 декабря 2008 г. № 294-ФЗ «О защите прав юридических лиц и индивидуальных предпринимателей при осуществлении государственного контроля (надзора) и муниципального контроля». При этом Правила устройства и безопасной эксплуатации платформ подъемных для инвалидов (ПБ 10–403–01), утвержденные постановлением Госгортехнадзора России от 11 марта 2001 г. № 10, Правила устройства и безопасной эксплуатации эскалаторов (ПБ 10–77–94), утвержденные постановлением Госгортехнадзора России от 2 августа 1994 № 47, применяются в настоящее время в части, не противоречащей действующему законодательству.

В 2015 г. при участии сотрудников центрального аппарата Ростехнадзора проведены проверки деятельности 3 организаций, осуществляющих эксплуатацию канатных дорог. В ходе проверок были выявлены многочисленные нарушения установленных требований действующего законодательства, к организациям применены меры административного воздействия в соответствии с требованиями КоАП Российской Федерации.

Также с участием сотрудников центрального аппарата Ростехнадзора проведены плановая и контрольная проверки реализации Правительством Москвы переданных Федеральной службой по экологическому, технологическому и атомному надзору части своих полномочий.

Изменения законодательства в области промышленной безопасности в части классификации ОПО и формирования новых принципов риск-ориентированного надзора за соблюдением эксплуатирующими организациями требований промышленной безопасности привели к тому, что ОПО, на которых используются только стационарно установленные грузоподъемные механизмы (за исключением лифтов, подъемных платформ для инвалидов), эскалаторы в метрополитенах, фуникулеры, отнесены к IV классу опасности, осуществление государственного надзора за которыми законодательством предусмотрено путем мониторинга информации, поступающей от эксплуатирующих организаций, без проведения плановых проверок, по причине идентификации и отнесения таких объектов к объектам с низким риском возникновения аварии при эксплуатации опасного производственного объекта.

За счет появления вышеуказанного класса опасности произошло уменьшение количества объектов, относимых к более высоким классам опасности опасных производственных объектов.
водственных объектов, в отношении которых предусмотрено осуществление государственного контроля и надзора путем проведения плановых проверок.

Одновременно с изменениями в № 116-ФЗ у Ростехнадзора появились новые полномочия, установленные постановлением Правительства Российской Федерации от 13.05.2013 № 407 «Об уполномоченных органах Российской Федерации по обеспечению государственного контроля (надзора) за соблюдением требований технических регламентов Таможенного союза» в связи с принятием Комиссией Таможенного союза технических регламентов Таможенного союза технических регламентов Таможенного союза «Безопасность лифтов», «О безопасности машин и оборудования», вступившими в силу в 2013 г. и устанавливающими требования к проектированию, изготовлению и подтверждению соответствия технических устройств, впервые выпускаемых в обращение на территории стран Таможенного союза, ранее содержавшиеся в правилах устройства и безопасной эксплуатации соответствующего поднадзорного оборудования.

Согласно предоставленным полномочиям по осуществлению контроля (надзора) за соблюдением требований технических регламентов Таможенного союза Ростехнадзору поручен контроль и надзор:

в отношении лифтов и устройств безопасности лифтов, которые эксплуатируются на опасных объектах — на стадии их эксплуатации, а также в процессе монтажа при строительстве и реконструкции объектов капитального строительства, в отношении которого контроль (надзор) за соблюдением обязательных требований, установленных техническим регламентом, обеспечивается федеральными органами исполнительной власти или органами исполнительной власти субъектов Российской Федерации при проведении государственного строительного надзора в соответствии с законодательством Российской Федерации о градостроительной деятельности;

в отношении машин и оборудования, включающих в себя все подъемные сооружения, за которыми Ростехнадзор осуществляет контроль и надзор на поднадзорных объектах, и связанных с требованиями к этой продукции процессов эксплуатации и утилизации.

Кроме этого постановлением Правительства Российской Федерации от 13.05.2013 № 407 Ростехнадзору поручено осуществление государственного контроля (надзора) за соблюдением обязательных требований к продукции, сопровождаемой действительными документами об оценке (подтверждении) соответствия, произведенной и выпущенной в обращение в соответствии с действовавшими до дня вступления в силу технических регламентов Таможенного союза «Безопасность лифтов», «О безопасности машин и оборудования» (далее — ТР ТС) обязательными требованиями, установленными в соответствии с законодательством Российской Федерации о техническом регулировании.

Подготовлены предложения и замечания по результатам рассмотрения:

представленных Техническим комитетом по стандартизации проектов редакций межгосударственных стандартов «Краны грузоподъемные» и «Подъемники с рабочими платформами». По результатам рассмотрения направлены необходимые замечания для корректировки указанных проектов межгосударственных стандартов;

представленных Национальным Лифтовым Союзом проектов профессиональных стандартов.

С целью обеспечения выполнения требований разработанных ФНП в соответствии с полномочиями, предоставленными Ростехнадзору постановлением Правительства Российской Федерации от 13 мая 2013 г. № 407, в 2015 г. проводилась раз-
работа руководств по безопасности, содержащих рекомендации по осуществлению государственного контроля (надзора) за соблюдением требований нормативных правовых актов и нормативных документов в области промышленной безопасности подъемных сооружений.

2.2.20. Электрические станции, котельные, электрические и тепловые установки и сети

В 2015 г. государственный энергетический надзор и надзор за соблюдением законодательства об энергосбережении и повышении энергетической эффективности осуществлялся 23 территориальными управлениями Ростехнадзора в 85 субъектах Российской Федерации, в 9 федеральных округах.

Общее количество поднадзорных Ростехнадзору организаций составляет более 1,7 млн, из них:

- число поднадзорных объектов — более 3,8 млн шт.
- тепловых электростанций — 603 шт.
- газотурбинных (газопоршневых) электростанций — 252 шт.
- малых (технологических) электростанций — 21,5 тыс. шт.
- гидроэлектростанций — 158 шт.
- котельных — всего — более 113 тыс.

в том числе:
- производственных — 11 906 шт.
- отопительно-производственных — 15 003 шт.
- отопительных — 86 410 шт.

протяженность тепловых сетей (в двухтрубном исполнении) — более 256 тыс. км

протяженность линий электропередачи — всего — около 5 млн км

в том числе:
- напряжением до 1 кВ — более 2,3 млн км
- напряжением выше 1 до 110 кВ — более 2 млн км
- напряжением 220 кВ и выше — 263 тыс. км
- электрических подстанций — 913,7 тыс. шт.
- потребителей электрической и тепловой энергии всего — более 2,6 млн

В 2015 г. под руководством и непосредственным участием центрального аппарата Ростехнадзора совместно с территориальными органами проведены 4 плановые и 28 внеплановых проверок поднадзорных организаций, среди них:

По результатам внеплановых проверок в отношении ООО «Лукойл-Ростовэнерго», ОАО «ТГК-11», ОАО «ТГК-13», ОАО «Томская генерация» выявлено 245 нарушений обязательных требований законодательства и нормативных технических документов в области электроэнергетики.
За 2015 г. инспекторским составом территориальных органов Ростехнадзора проведено более 128 тыс. обследований в рамках контроля организации безопасной эксплуатации и технического состояния оборудования и основных сооружений электростанций, электрических и тепловых сетей энергоснабжающих организаций, выявлено более 500 тыс. нарушений.

В ходе проверок отмечен низкий уровень организации и неудовлетворительное состояние дел по вопросам: подготовки и повышения квалификации персонала; технического перевооружения и реконструкции электростанций и сетей; обновления основных производственных фондов.

Инспекторским персоналом Ростехнадзора в ходе проведения проверок применены меры административного наказания в отношении 30 тыс. юридических лиц и индивидуальных предпринимателей. Сумма взысканных штрафов составила более 140 млн руб.

За отчетный период в ходе проведенных территориальными органами Ростехнадзора проверок по контролю за состоянием безопасности в электро- и теплоснабжающих организациях при прохождении осенне-зимнего периода 2014—2015 гг. было обследовано:

более 400 объектов электроэнергетики;
более 3 тыс. отопительных и отопительно-производственных котельных;
128 теплосетевых организаций.

В ходе проверок было выявлено более 14 тыс. нарушений норм и правил безопасности при эксплуатации теплоэнергетического оборудования, привлечены к ответственности 469 юридических и 860 физических лиц.

О неудовлетворительном состоянии безопасности энергоустановок в электро- и теплоснабжающих организациях направлены письма в адрес: полномочных представителей Президента Российской Федерации — 46, органов прокуратуры — 41, губернаторов субъектов Российской Федерации — 20, органов исполнительной власти субъектов Российской Федерации — 27; органов местного самоуправления — 76.

Осуществляя контроль за состоянием безопасности в электро- и теплоснабжающих организациях при подготовке к работе в осенне-зимний период 2015—2016 гг., территориальные органы Ростехнадзора провели обследования:

более 1 тыс. объектов электроэнергетики;
более 3 тыс. теплоснабжающих организаций;
22,6 тыс. отопительных и отопительно-производственных котельных;
472 теплосетевых организаций.

В ходе проверок выявлено более 65 тыс. нарушений норм и правил.

Привлечено к административной ответственности более 5 тыс. физических лиц и 1280 юридических лиц.

Направлены письма о неудовлетворительном состоянии безопасности энергоустановок в электро- и теплоснабжающих организациях в адрес полномочных представителей Президента Российской Федерации — 59, органов прокуратуры — 89, гу-
бернаторов субъектов Российской Федерации — 55, органов исполнительной власти субъектов Российской Федерации и органов местного самоуправления — 371.

Проведенные за этот период проверки показали, что в большинстве регионов Российской Федерации подготовка к отопительному сезону проведена в соответствии с намеченными планами.

В 2015 г. произошло 53 несчастных случая со смертельным исходом (в 2014 г. — 66 несчастных случаев).

Это подтверждает эффективность проведенной контрольно-профилактической работы по предупреждению травматизма в поднадзорных организациях.

Наибольшее количество несчастных случаев со смертельным исходом в 2015 г. произошло на электроустановках потребителей — 29 (55%).

В электрических сетях количество несчастных случаев со смертельным исходом составило 23 (43 %), в тепловых установках энергоснабжающих организаций — 1 (2 %) (рис. 60).

Наибольшее количество несчастных случаев произошло в ходе выполнения работ на воздушных линиях электропередачи, вблизи шинопроводов и электропроводки без снятия напряжения, а также в распределительных устройствах вследствие случайного прикосновения к токоведущим частям, находящимся под напряжением.
Основные причины несчастных случаев:
недостаточная подготовленность персонала к выполнению приемов, влияющих на безопасность работ;
неэффективность мероприятий по подготовке и обучению персонала выполнению требований безопасности;
невыполнение мероприятий по поддержанию энергоустановок в безопасном состоянии;
неэффективность мероприятий, обеспечивающих безопасность работ в энергоустановках;
отсутствие контроля за проведением организационных и технических мероприятий по обеспечению безопасности при эксплуатации электроустановок;
личная недисциплинированность работников.

Несчастный случай, связанный с невыполнением технических мероприятий по подготовке рабочих мест: 13 января 2015 г. в ООО «Калугазэнерго-финанс» (г. Калуга) при производстве работ по ошиновке кабеля в РУ – 0,4 кВ ТП «Малиновка» работник прикоснулся к шине соседнего автоматического выключателя, находящегося под напряжением, в результате чего был поражен электрическим током.

Несчастный случай, связанный с прикосновением к элементам, находящимся под напряжением: 30 марта 2015 г. в ОАО «МРСК Урала» (Пермский край, п. Усьва) во время работ по замене увлажненного масла фазы «В» в выключателе 35 кВ воздушной линии 35 кВ Усьва — Шумиха 2 на подстанции «Усьва» электрослесарь по ремонту оборудования распределительных устройств коснулся токоведущих выводов «А» и «В» масляного выключателя МВ 35 кВ ВЛ 35 кВ Усьва — Шумиха 2 и был поражен электрическим током.

Несчастный случай, связанный с приближением на недопустимое расстояние к незаземленным токоведущим частям и неприменением средств защиты: 18 мая 2015 г. в филиале «Калугазэнерго» ОАО «МРСК Центра и Приволжья» (Калужская область, Бабынинский район) электромонтер по эксплуатации распределительных сетей при проведении работ по ремонту ЗТП № 324 «Лицей» приблизился на недопустимое расстояние к токоведущим частям 10 кВ и был смертельно поражен электрическим током.

Исходя из анализа обстоятельств и причин несчастных случаев руководителям предприятий, организаций, учреждений было рекомендовано:
1. Повысить уровень организации производства работ на электрических и теплово вых установках. Исключить допуск персонала к работе без обязательной проверки выполнения организационных и технических мероприятий при подготовке рабочих мест.
2. Обеспечивать проверку знаний персоналом нормативных правовых актов по охране труда при эксплуатации электроустановок, персонал, не прошедший проверку знаний по мерам безопасности, к работам в энергоустановках не допускать.
3. Обеспечить установленный порядок содержания, применения и испытания средств защиты.

Рис. 60. Распределение несчастных случаев по видам объектов энергетики
4. Усилий контроль за выполнением мероприятий, обеспечивающих безопасность работ.
5. Проводить разъяснительную работу с персоналом о недопустимости самовольных действий, повышать производственную дисциплину, особое внимание обратить на организацию производства работ в начале рабочего дня и после перерыва на обед.
6. Повысить уровень организации работ по монтажу, демонтажу, замене и ремонту энергооборудования, усилить контроль за соблюдением порядка включения и выключения энергооборудования и его осмотров.
7. Не допускать персонала к проведению работ в особо опасных помещениях и помещениях с повышенной опасностью без электро защитных средств.
8. Обеспечить выполнение требований безопасности на линиях электропередачи, находящихся под наведенным напряжением.
9. Не допускать проведение работ вне помещений при проведении технического обслуживания во время интенсивных осадков и при плохой видимости.

В 2015 г. на объектах энергетики произошло 63 аварии (в 2014 г. — 87).
Показатели аварийности в 2010—2015 гг. приведены на рис. 61.

Рис. 61. Количество аварий за 2010—2015 гг.

Наибольшее число аварий — 27 (42,8%) произошло на теплоэлектростанциях, гидроэлектростанциях (из-за отключения генерирующего оборудования) и объектах электросетевого хозяйства, что привело к снижению надежности энергосистемы, включая разделение энергосистемы на части, а также выделение отдельных энергорайонов Российской Федерации на изолированную работу от Единой энергетической системы России (рис. 62).
Так, 8 июня 2015 г. в ПАО «Красноярская ГЭС» произошло отключение ВЛ 500 кВ Красноярская ГЭС — Назаровская ГРЭС № 2 (филиал ОАО «ФСК ЕЭС» — Красноярское ПМЭС). Это привело к отделению восточной части ОЭС Сибири на изолированную от ЭС России работу с избыточном генерации и повышением частоты до 50,21 Гц. При этом в Кузбасской энергосистеме отключилась нагрузка Новокузнецкого алюминиевого завода величиной 367 МВт, Кузнецкого ферросплавного завода величиной 123 МВт. В Хакасской энергосистеме отключилась нагрузка Хакасского алюминиевого завода величиной 447 МВт.
Рис. 62. Причины воникновения аварий

4 сентября 2015 г. в Филиале «Нижегородский» ПАО «Т Плюс» на Дзержинской ТЭЦ из-за ошибочных действий оперативного персонала произошло самопроизвольное включение МВ ТГ-6 при опробовании защит генератора ТГ-6, вследствие чего ТГ-6 включен в работу в двигательном режиме. Произошло повреждение уплотнения турбогенератора со стороны возбудителя. Энергоблок находился в ремонте более 25 суток.

Анализ случаев прекращения энергоснабжения потребителей показывает, что их основными причинами продолжают оставаться ветхое состояние оборудования и сетей, прекращение подачи электроэнергии, неквалифицированные действия обслуживающего персонала.

По итогам 2015 г. можно выделить основные причины аварий в электросетевом хозяйстве:

- несоблюдение сроков и невыполнение в требуемых объемах технического обслуживания и ремонта оборудования и устройств;
- отсутствие контроля за техническим освидетельствованием оборудования;
- неисправность РЗА;
- износ оборудования в процессе длительной эксплуатации;
- неправильная работа средств режимной и аварийной автоматики из-за проектных ошибок, отклонений от проектов в процессе монтажа и эксплуатации оборудования, ошибочных действий оперативного и диспетчерского персонала;
- неквалифицированные действия обслуживающего персонала;
- низкое качество проведения технического обслуживания с последующими отказами оборудования из-за сбоев в работе релейной защиты и автоматики, коротких замыканий, перекрытия фарфоровых изоляторов;
- провоз негабаритных грузов, работа автокранов вблизи воздушной линии, несанкционированная рубка и транспортировка леса с касанием проводов, замыканием на землю и последующим развитием аварии;
- производственные дефекты оборудования, приводящие к механическим повреждениям, разрушениям оборудования и возможному возгоранию.

Государственный надзор и контроль за соблюдением законодательства об энергосбережении и повышении энергетической эффективности осуществляется территориальными органами Ростехнадзора в отношении более 150 тыс. организаций с государственным участием, обязанных принимать программы энергосбережения, и более 200 тыс. организаций, обязанных проводить энергетическое обследование в установленный срок.
При осуществлении государственного надзора и контроля за соблюдением законодательства об энергосбережении и повышении энергетической эффективности территориальными органами Ростехнадзора в 2015 г. проверено более 18 тыс. организаций, обязанных принять программы энергосбережения.

В ходе проверок выявлено 1084 организации, нарушающие данные требования. За допущенные нарушения штрафным санкциям подверглось 539 юридических и 543 должностных лица на общую сумму 1 374 тыс. руб.

Проверено более 20 тыс. организаций, которые в соответствии с действующим законодательством обязаны были провести первое обязательное энергетическое обследование не позднее 31 декабря 2012 г., при этом выявлено 1796 организаций, нарушающих данное требование. За допущенные нарушения наложены штрафы на 575 юридических лиц и 66 должностных лиц на общую сумму 3,3 млн руб.

В ходе проверок юридических лиц и индивидуальных предпринимателей осуществлялся контроль за оснащением зданий, строений и сооружений приборами учета. Выявлено 799 зданий, не оснащенных приборами учета энергетических ресурсов. Административное наказание в виде штрафа наложено на 14 юридических лиц и 97 должностных лиц на общую сумму 2,3 млн руб.

Задачи по направлению государственного энергетического надзора на 2016 год:
- организация дистанционного контроля на крупных объектах электроэнергетики вертикально интегрированных компаний;
- законодательное урегулирование следующих вопросов:
 - по разработке федеральных норм и правил в сфере энергетики;
 - по осуществлению мероприятий контрольно-надзорной деятельности в отношении потребителей электрической энергии, а также в сфере теплоснабжения и энергосбережения;
- своевременное исполнение Плана нормотворческой деятельности Федеральной службы по экологическому, технологическому и атомному надзору на 2016 год;
- обеспечение высокого качества и эффективности проведения комплексных проверок в соответствии с Планом проведения плановых проверок юридических лиц и индивидуальных предпринимателей на 2016 год;
- обеспечение действенного контроля за выполнением предписаний, выданных Ростехнадзором по результатам проверок предприятий, входящих в состав крупных холдингов;
- повышение эффективности контроля за безаварийным прохождением осенне-зимнего периода 2016—2017 гг. и ходом подготовки к предстоящему отопительному периоду;
- мониторинг развития паводковой ситуации в субъектах Российской Федерации, а также выполнение мероприятий по безаварийному пропуску паводковых вод;
- повышение уровня подготовки инспекторского состава, интенсивности его работы при проведении проверок;
- реализация в полной мере полномочий, предусмотренных Кодексом Российской Федерации об административных правонарушениях, по административному приостановлению деятельности, дисквалификации руководителей за невыполнение законных предписаний в установленные сроки;
- улучшение информационной работы, доведение до поднадзорных организаций результатов проверок, обстоятельств и причин аварий и несчастных случаев;
- сосредоточение основных усилий на проверках вертикально интегрированных организаций.
2.2.21. Гидротехнические сооружения

В соответствии с Положением о Федеральной службе по экологическому, технологическому и атомному надзору, утвержденным постановлением Правительства Российской Федерации от 30 июля 2008 г. № 401, и Положением о федеральном государственном надзоре в области безопасности гидротехнических сооружений, утвержденным постановлением Правительства Российской Федерации от 27 октября 2012 г. № 1108, за Ростехнадзором закреплены функции по осуществлению федерального государственного надзора в области безопасности гидротехнических сооружений (за исключением судоходных и портовых гидротехнических сооружений).

Общее количество поднадзорных Ростехнадзору гидротехнических сооружений (далее — ГТС), комплексов ГТС промышленности, энергетики и водохозяйственного комплекса составляет 29 964, из них:

- 844 комплекса ГТС жидких промышленных отходов;
- 568 комплекса ГТС топливно-энергетического комплекса;
- 28 552 ГТС водохозяйственного комплекса, в том числе бесхозяйные ГТС — 3496.

ГТС распределены по классам следующим образом:

<table>
<thead>
<tr>
<th>Класс</th>
<th>Количество</th>
</tr>
</thead>
<tbody>
<tr>
<td>I клас</td>
<td>116 комплексов;</td>
</tr>
<tr>
<td>II клас</td>
<td>332 комплекса;</td>
</tr>
<tr>
<td>III клас</td>
<td>669 комплексов;</td>
</tr>
<tr>
<td>IV клас</td>
<td>28 847 комплексов.</td>
</tr>
</tbody>
</table>

Режим постоянного государственного надзора установлен на 116 комплексах ГТС, из них:

- 67 комплексов ГТС объектов энергетики;
- 34 комплекса ГТС объектов промышленности;
- 15 комплексов ГТС водохозяйственного комплекса.

По данным Российского регистра ГТС уровень безопасности поднадзорных ГТС оценивается следующим образом:

<table>
<thead>
<tr>
<th>Уровень безопасности</th>
<th>Количество комплексов</th>
</tr>
</thead>
<tbody>
<tr>
<td>Нормальный</td>
<td>39,4 % комплексов ГТС;</td>
</tr>
<tr>
<td>Пониженный</td>
<td>43,4 % комплексов ГТС;</td>
</tr>
<tr>
<td>Неудовлетворительный</td>
<td>12,5 % комплексов ГТС;</td>
</tr>
<tr>
<td>Опасный</td>
<td>4,7 % комплексов ГТС.</td>
</tr>
</tbody>
</table>

В 2015 г. Ростехнадзором рассмотрена и утверждена 401 декларация безопасности ГТС и экспертных заключений на декларации безопасности ГТС.

В соответствии с Инструкцией о ведении Российского регистра гидротехнических сооружений, утвержденной приказом Минприроды России от 29 января 2013 г. № 34 (зарегистрирован Минюстом России 8 мая 2013 г. № 28354), направлены в Росводресурсы информационные данные по 414 объектам, подлежащим внесению в Российский регистр гидротехнических сооружений.
В 2015 г. Ростехнадзором проведено 4672 мероприятия по контролю и надзору за соблюдением собственниками и эксплуатирующими организациями обязательных требований в области безопасности ГТС, выявлены и предписаны к устранению более 18 тыс. нарушений обязательных требований в области безопасности ГТС.

Подвергнуто штрафным санкциям 1858 юридических и должностных лиц, общая сумма штрафов составила 16 984 тыс. руб., в 5 случаях применено административное приостановление деятельности.

В целях организации и проведения в 2015 г. безаварийного пропуска весенного половодья и паводков, предотвращения аварий и чрезвычайных ситуаций на поднадзорных гидротехнических сооружениях Ростехнадзором издан приказ от 29 января 2015 г. № 29 «О безопасной эксплуатации и работоспособности гидротехнических сооружений, поднадзорных Федеральной службе по экологическому, технологическому и атомному надзору, в период весенного половодья и паводка 2015 года».

В соответствии с вышеуказанным приказом должностные лица Ростехнадзора:
принимали участие в мероприятиях по организации безаварийного пропуска паводковых вод в 2015 г., обследованиях гидротехнических сооружений, проводимых территориальными органами МЧС России совместно с бассейновыми водными управлениями Росводресурсов, органами исполнительной власти субъектов Российской Федерации и местного самоуправления;
осуществляли контроль за состоянием и эксплуатацией поднадзорных гидротехнических сооружений в период прохождения паводка, в том числе в период пикового прохождения весеннего половодья и паводков в режиме постоянного государственного надзора;
обеспечили направление предложений в органы исполнительной власти субъектов Российской Федерации, органы местного самоуправления, на территории которых расположены гидротехнические сооружения, предназначенные для инженерной защиты территорий и населенных пунктов от подтопления, а также бесхозяйные гидротехнические сооружения, для решения вопроса об обеспечении безопасности этих сооружений в период весенного половодья и паводка;
принимали участие в ежедневных селекторных совещаниях, проводимых ФКУ «Национальный центр по управлению в кризисных ситуациях» МЧС России в режиме видеоконференций; в работе региональных и территориальных противопаводковых комиссий субъектов Российской Федерации и органов местного самоуправления; деятельности советов общественной безопасности в субъектах Российской Федерации.

В рамках проводимой работы организовано взаимодействие с органами Росгидромета в части получения оперативной информации о прогнозном развитии паводковой ситуации, погодных условиях и температурных режимах, водности рек, а также по запасам воды в снежном покрове и высоты снежного покрова до окончания паводкового периода 2015 г.

Территориальные органы Ростехнадзора принимали участие в совместных с территориальными органами МЧС России учениях по отработке действий органов управления силами и средствами по ликвидации чрезвычайных ситуаций в период прохождения пика половодья и паводков.

В 2015 г. на поднадзорных Ростехнадзору ГТС аварий не зафиксировано.
В результате выполненной в 2015 г. работы по выявлению и сокращению бесхозяйных ГТС количество бесхозяйных ГТС уменьшилось на 981 сооружение (21,9 %), с 4477 (на 1 января 2015 г.) до 3496 сооружений, из них:
- 513 — с нормальным уровнем безопасности (в 2014 г. — 523);
- 2333 — с пониженным уровнем безопасности (в 2014 г. — 3169);
- 588 — с неудовлетворительным уровнем безопасности (в 2014 г. — 460);
- 197 — с опасным уровнем безопасности (в 2014 г. — 190).

Основная часть бесхозяйных ГТС находится на территориях, поднадзорных Центральному, Волжско-Окскому, Верхне-Донскому, Нижне-Волжскому управлениям Ростехнадзора.

В 2015 г. полностью ликвидированы бесхозяйные ГТС на территории, поднадзорной Северо-Уральскому управлению Ростехнадзора. Таким образом, на территориях, поднадзорных Печорскому, Северо-Уральскому, Сахалинскому, Ленскому, Крымскому управлениям Ростехнадзора бесхозяйные ГТС в настоящее время отсутствуют.

В 2015 г. полностью ликвидированы бесхозяйные ГТС на территориях Пермского края, Вологодской, Тюменской, Амурской, Сахалинской областей.

Кроме того, в настоящее время отсутствуют бесхозяйные ГТС на территориях Республики Дагестан, Ингушетия, Карелия, Коми, Адыгей, Башкортостан, Татарстан, Мариий Эл, Алтай, Тыва, Саха (Якутия), а также Чукотского, Ненецкого, Ханты-Мансийского, Ямало-Ненецкого автономных округов, Камчатского края, Новосибирской, Омской, Томской областей.

За отчетный период дополнительно выявлено 541 бесхозяйное ГТС, из них:
- 26 — с нормальным уровнем безопасности;
- 117 — с пониженным уровнем безопасности;
- 42 — с неудовлетворительным уровнем безопасности;
- 11 — с опасным уровнем безопасности.

Органами местного самоуправления и органами государственной власти субъектов Российской Федерации в 2015 г.:
- поставлено на учет в органах государственной регистрации 860 бесхозяйных ГТС;
- оформлено право собственности на 537 бесхозяйных ГТС, из них:
- 24 — с нормальным уровнем безопасности;
- 389 — с пониженным уровнем безопасности;
- 107 — с неудовлетворительным уровнем безопасности;
- 17 — с опасным уровнем безопасности;
- ликвидировано 640 бесхозяйных ГТС, из них:
- 12 — с нормальным уровнем безопасности;
- 564 — с пониженным уровнем безопасности;
- 63 — с неудовлетворительным уровнем безопасности;
- 1 — с опасным уровнем безопасности.

По состоянию на 1 января 2016 г. выполняются мероприятия по ликвидации 20 бесхозяйных ГТС, из них:
- 3 — с нормальным уровнем безопасности;
- 2 — с пониженным уровнем безопасности;
- 15 — с неудовлетворительным уровнем безопасности.

В 2015 г. Ростехнадзором разработаны следующие нормативные правовые акты в области безопасности ГТС:
- проект федерального закона «О внесении изменений в Федеральный закон «О безопасности гидротехнических сооружений», направленный на дифференциа-
Годовой отчет о деятельности Федеральной службы

Проект приказа Ростехнадзора «Об утверждении Методики определения размера вреда, который может быть причинен жизни, здоровью физических лиц, имуществу физических и юридических лиц в результате аварии гидротехнических сооружений (за исключением судоходных и портовых гидротехнических сооружений)»;

Проект приказа Ростехнадзора «Об утверждении Административного регламента исполнения Федеральной службой по экологическому, технологическому и атомному надзору государственной функции по осуществлению федерального государственного надзора в области безопасности гидротехнических сооружений (за исключением судоходных и портовых гидротехнических сооружений)».

Приняты Правительством Российской Федерации:

Постановление Правительства Российской Федерации от 17 января 2015 г. № 1378 «О внесении изменений в некоторые акты Правительства Российской Федерации и признании утратившим силу подпункта 5.5.3 Положения о Федеральном агентстве водных ресурсов»;

Распоряжение Правительства Российской Федерации от 23 января 2015 г. № 2646-р «Об отнесении к ведению Ростехнадзора ФГБУ «Центр Российского регистра гидротехнических сооружений».

В 2015 г. Ростехнадзором выпущены:

Приказ Ростехнадзора от 2 октября 2015 г. № 394 «Об утверждении Административного регламента Федеральной службы по экологическому, технологическому и атомному надзору по предоставлению государственной услуги по выдаче разрешений на эксплуатацию гидротехнических сооружений (за исключением судоходных и портовых гидротехнических сооружений)»;

Приказ Ростехнадзора от 3 ноября 2015 г. № 448 «Об утверждении Административного регламента Федеральной службы по экологическому, технологическому и атомному надзору по предоставлению государственной услуги по определению экспертных центров, проводящих государственную экспертизу деклараций безопасности гидротехнических сооружений (за исключением судоходных и портовых гидротехнических сооружений)»;

Приказ Ростехнадзора от 3 ноября 2015 г. № 447 «Об утверждении Административного регламента Федеральной службы по экологическому, технологическому и атомному надзору по предоставлению государственной услуги по согласованию правил эксплуатации гидротехнических сооружений (за исключением судоходных и портовых гидротехнических сооружений)»;

Приказ Ростехнадзора от 12 августа 2015 г. № 312 «Об утверждении Административного регламента Федеральной службы по экологическому, технологическому и атомному надзору по предоставлению государственной услуги по утверждению деклараций безопасности поднадзорных гидротехнических сооружений, находящихся в эксплуатации»;

Приказ Ростехнадзора от 2 октября 2015 г. № 395 «Об утверждении Требований к содержанию правил эксплуатации гидротехнических сооружений (за исключением судоходных и портовых гидротехнических сооружений)».
2.2.22. Государственный строительный надзор

2.2.22.1. Осуществление государственного строительного надзора при строительстве, реконструкции объектов капитального строительства

Федеральной службой по экологическому, технологическому и атомному надзору в соответствии с пунктом 2 постановления Правительства Российской Федерации от 01.02.2006 № 54 «О государственном строительном надзоре в Российской Федерации» осуществляется федеральный государственный строительный надзор при строительстве и реконструкции всех объектов, указанных в пункте 5.1 статьи 6 Градостроительного кодекса Российской Федерации, за исключением тех объектов, в отношении которых осуществление государственного строительного надзора узаконено Президентом Российской Федерации возложено на иные федеральные органы исполнительной власти, и объектов федеральных ядерных организаций.

Государственную функцию по осуществлению федерального государственного строительного надзора в соответствии с Административным регламентом по исполнению Федеральной службой по экологическому, технологическому и атомному надзору государственной функции по осуществлению федерального государственного строительного надзора при строительстве, реконструкции объектов капитального строительства, указанных в пункте 5.1 статьи 6 Градостроительного кодекса Российской Федерации, за исключением тех объектов, в отношении которых осуществление государственного строительного надзора узаконено Президентом Российской Федерации возложено на иные федеральные органы исполнительной власти, утвержденным приказом Ростехнадзора от 31 января 2013 г. № 38, исполняет центральный аппарат Ростехнадзора в части организации исполнения государственной функции, научно-методического обеспечения государственного строительного надзора в Российской Федерации, а также территориальные органы Ростехнадзора в части непосредственного выполнения мероприятий и действий по осуществлению государственной функции.

В территориальных управлениях Ростехнадзора количество штатных единиц по должностям, предусматривающим выполнение функции государственного строительного надзора, составило 316, из них занятых — 279; вакантных — 37.

Количество поднадзорных территориальным управлениям Ростехнадзора объектов капитального строительства, включая объекты, по которым выданы заключения о соответствии, на конец 2015 г. составило 15 194, из них 12 953 объекта строительства, 2241 объект реконструкции.

Поднадзорные объекты капитального строительства распределены по категориям в соответствии с пунктом 5.1 статьи 6 и статьей 48.1 Градостроительного кодекса Российской Федерации (табл. 113).

<table>
<thead>
<tr>
<th>№ п/п</th>
<th>Вид поднадзорного объекта</th>
<th>Количество поднадзорных объектов</th>
<th>% от общего количества</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Объекты на территории двух и более субъектов РФ</td>
<td>248</td>
<td>1,63</td>
</tr>
<tr>
<td>2</td>
<td>Объекты в исключительной экономической зоне РФ</td>
<td>0</td>
<td>0,00</td>
</tr>
<tr>
<td>3</td>
<td>Объекты на континентальном шельфе РФ</td>
<td>6</td>
<td>0,04</td>
</tr>
<tr>
<td>4</td>
<td>Объекты во внутренних морских водах</td>
<td>8</td>
<td>0,05</td>
</tr>
</tbody>
</table>

Таблица 113
<table>
<thead>
<tr>
<th>№ п/п</th>
<th>Вид поднадзорного объекта</th>
<th>Количество поднадзорных объектов</th>
<th>% от общего количества</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Объекты в территориальном море РФ</td>
<td>2</td>
<td>0,01</td>
</tr>
<tr>
<td>6</td>
<td>Объекты обороны и безопасности</td>
<td>62</td>
<td>0,41</td>
</tr>
<tr>
<td>7</td>
<td>Автомобильные дороги федерального значения</td>
<td>277</td>
<td>1,82</td>
</tr>
<tr>
<td>8</td>
<td>Объекты культурного наследия федерального значения</td>
<td>56</td>
<td>0,37</td>
</tr>
<tr>
<td>9</td>
<td>Объекты использования атомной энергии</td>
<td>2</td>
<td>0,01</td>
</tr>
<tr>
<td>10</td>
<td>Гидротехнические сооружения I, II классов</td>
<td>123</td>
<td>0,81</td>
</tr>
<tr>
<td>11</td>
<td>Строения связи</td>
<td>206</td>
<td>1,36</td>
</tr>
<tr>
<td>12</td>
<td>Линии электропередачи и иные объекты электросетевого хозяйства напряжением 330 КВ и более</td>
<td>175</td>
<td>1,15</td>
</tr>
<tr>
<td>13</td>
<td>Объекты космической инфраструктуры</td>
<td>45</td>
<td>0,30</td>
</tr>
<tr>
<td>14</td>
<td>Объекты авиационной инфраструктуры</td>
<td>270</td>
<td>1,78</td>
</tr>
<tr>
<td>15</td>
<td>Объекты инфраструктуры железнодорожного транспорта общего пользования</td>
<td>488</td>
<td>3,21</td>
</tr>
<tr>
<td>16</td>
<td>Метрополитены</td>
<td>23</td>
<td>0,15</td>
</tr>
<tr>
<td>17</td>
<td>Морские порты, кроме портов для спортивных и прогулочных судов</td>
<td>68</td>
<td>0,45</td>
</tr>
<tr>
<td>18</td>
<td>Тепловые электростанции мощностью 150 МВт и выше</td>
<td>74</td>
<td>0,49</td>
</tr>
<tr>
<td>19</td>
<td>Опасные производственные объекты, из них:</td>
<td>12 797</td>
<td>84,22</td>
</tr>
<tr>
<td>19.1</td>
<td>опасные производственные объекты I и II классов опасности, на которых получаются, используются, перерабатываются, образуются, хранятся, транспортируются, уничтожаются опасные вещества (ед.), из них:</td>
<td>3746</td>
<td>24,65</td>
</tr>
<tr>
<td>19.1.1</td>
<td>опасные производственные объекты бурения и добычи нефти, газа и газового конденсата</td>
<td>1838</td>
<td>12,10</td>
</tr>
<tr>
<td>19.2</td>
<td>опасные производственные объекты, на которых получаются, транспортируются, используются расплавы черных и цветных металлов, сплавы на основе этих расплавов с применением оборудования, рассчитанного на максимальное количество расплава 500 килограммов и более</td>
<td>101</td>
<td>0,66</td>
</tr>
<tr>
<td>19.3</td>
<td>опасные производственные объекты, на которых ведутся горные работы (за исключением добычи общераспространенных полезных ископаемых и разработки россыпных месторождений полезных ископаемых, осуществляемых открытым способом без применения взрывных работ), работы по обогащению полезных ископаемых</td>
<td>5265</td>
<td>34,65</td>
</tr>
<tr>
<td>19.4</td>
<td>иные опасные производственные объекты</td>
<td>3685</td>
<td>24,25</td>
</tr>
<tr>
<td>20</td>
<td>Уникальные объекты</td>
<td>89</td>
<td>0,59</td>
</tr>
<tr>
<td>21</td>
<td>Объекты, связанные с размещением и обезвреживанием отходов I–V классов опасности</td>
<td>57</td>
<td>0,38</td>
</tr>
<tr>
<td>22</td>
<td>Иные объекты в соответствии с законодательством Российской Федерации</td>
<td>45</td>
<td>0,30</td>
</tr>
<tr>
<td>23</td>
<td>Иные объекты, сведения о которых составляют государственную тайну</td>
<td>13</td>
<td>0,09</td>
</tr>
<tr>
<td>24</td>
<td>Иные объекты, определенные Правительством Российской Федерации</td>
<td>61</td>
<td>0,40</td>
</tr>
</tbody>
</table>

Итого (поднадзорных объектов): 15 194 100,00
Наибольшее количество поднадзорных объектов капитального строительства составляют опасные производственные объекты (84,22 %), в числе которых преобладают объекты обустройства месторождений.

Количество поднадзорных объектов распределено по территориальным управлениям Ростехнадзора и федеральным округам, как указано в табл. 114 и на рис. 63.

Таблица 114

Распределение между территориальными управлениями Ростехнадзора объектов капитального строительства

<table>
<thead>
<tr>
<th>Распределение поднадзорных объектов по федеральным округам</th>
<th>Количество поднадзорных объектов</th>
</tr>
</thead>
<tbody>
<tr>
<td>Центральный федеральный округ</td>
<td>908</td>
</tr>
<tr>
<td>МТУ</td>
<td>461</td>
</tr>
<tr>
<td>Центральное управление Ростехнадзора</td>
<td>224</td>
</tr>
<tr>
<td>Верхне-Донское управление Ростехнадзора</td>
<td>105</td>
</tr>
<tr>
<td>Приокское управление Ростехнадзора</td>
<td>118</td>
</tr>
<tr>
<td>Северо-Западный федеральный округ</td>
<td>929</td>
</tr>
<tr>
<td>Северо-Западное управление Ростехнадзора</td>
<td>613</td>
</tr>
<tr>
<td>Печорское управление Ростехнадзора</td>
<td>316</td>
</tr>
<tr>
<td>Южный федеральный округ</td>
<td>503</td>
</tr>
<tr>
<td>Нижне-Волжское управление Ростехнадзора</td>
<td>208</td>
</tr>
<tr>
<td>Северо-Кавказское управление Ростехнадзора</td>
<td>295</td>
</tr>
<tr>
<td>Приволжский федеральный округ</td>
<td>2042</td>
</tr>
<tr>
<td>Западно-Уральское управление Ростехнадзора</td>
<td>744</td>
</tr>
<tr>
<td>Приволжское управление Ростехнадзора</td>
<td>602</td>
</tr>
<tr>
<td>Средне-Поволжское управление Ростехнадзора</td>
<td>592</td>
</tr>
<tr>
<td>Волжско-Окское управление Ростехнадзора</td>
<td>104</td>
</tr>
<tr>
<td>Уральский федеральный округ</td>
<td>6975</td>
</tr>
<tr>
<td>Северо-Уральское управление Ростехнадзора</td>
<td>6738</td>
</tr>
<tr>
<td>Уральское управление Ростехнадзора</td>
<td>237</td>
</tr>
<tr>
<td>Сибирский федеральный округ</td>
<td>2363</td>
</tr>
<tr>
<td>Сибирское управление Ростехнадзора</td>
<td>522</td>
</tr>
<tr>
<td>Забайкальское управление Ростехнадзора</td>
<td>82</td>
</tr>
<tr>
<td>Енисейское управление Ростехнадзора</td>
<td>1759</td>
</tr>
<tr>
<td>Дальневосточный федеральный округ</td>
<td>1375</td>
</tr>
<tr>
<td>Дальневосточное управление Ростехнадзора</td>
<td>257</td>
</tr>
<tr>
<td>Сахалинское управление Ростехнадзора</td>
<td>28</td>
</tr>
<tr>
<td>Северо-Восточное управление Ростехнадзора</td>
<td>88</td>
</tr>
<tr>
<td>Ленское управление Ростехнадзора</td>
<td>1002</td>
</tr>
<tr>
<td>Северо-Кавказский федеральный округ</td>
<td>95</td>
</tr>
<tr>
<td>Кавказское управление Ростехнадзора</td>
<td>95</td>
</tr>
<tr>
<td>Крымский федеральный округ</td>
<td>4</td>
</tr>
<tr>
<td>Крымское управление Ростехнадзора</td>
<td>4</td>
</tr>
</tbody>
</table>

Количество поднадзорных Ростехнадзору объектов капитального строительства в динамике за период с 2011 по 2015 г. показано на рис. 64.
Уменьшение количества поднадзорных объектов в 2015 г. произошло в связи с вступлением в силу Федерального закона от 31 декабря 2014 г. № 533-ФЗ «О внесении изменений в статьи 49 и 51 Градостроительного кодекса Российской Федерации», которым отменена необходимость получения разрешения на строительство и экспертизы проектной документации буровых скважин, а соответственно и осуществления государственного строительного надзора.

Средняя нагрузка по количеству объектов на одного инспектора в 2015 г. составила 54 объекта.

Распределение нагрузки по количеству объектов по территориальным управлениям представлено на рис. 65. Наибольшее количество поднадзорных объектов приходится на инспекторов Ленского, Северо-Уральского, Енисейского управлений, причем большую часть объектов, почти 90 %, составляют объекты капитального строительства, подлежащие регистрации в государственном реестре опасных производственных объектов в соответствии с законодательством о промышленной безопасности.

При осуществлении в 2015 г. государственного строительного надзора территориальными управлениями Ростехнадзора проведено 13 486 проверок деятельности юридических лиц, индивидуальных предпринимателей (10 315 проверок по объектам строительства, 3171 — по объектам реконструкции), из них 4146 проверок проведено по программе проверок (2798 — по объектам строительства, 1348 — по объектам реконструкции), 9340 проверок проведено по иным основаниям (7516 — по объектам строительства, 1824 — по объектам реконструкции), а именно (рис. 66):

193 проверки по получению извещения о начале строительства (112 — по объектам строительства, 81 — по объектам реконструкции);
471 проверка по получению извещения о сроках завершения работ подлежащих проверке (315 — по объектам строительства, 156 — по объектам реконструкции);
824 проверки по получению извещений об устранении нарушений (581 — по объектам строительства, 243 — по объектам реконструкции);
1451 проверка по истечению сроков исполнения ранее выданных предписаний об устранении выявленных нарушений обязательных требований (985 — по объектам строительства, 466 — по объектам реконструкции);

6293 проверки по получению извещения об окончании строительства (5455 — по объектам строительства, 838 — по объектам реконструкции);

80 проверок по получению обращений и заявлений граждан, включая извещения, направляемые лицами, осуществляющими строительство, информации от органов государственной власти, органов местного самоуправления (49 — по объектам строительства, 31 — по объектам реконструкции);

10 проверок по приказу (распоряжению) руководителя (заместителя руководителя) органа государственного строительного надзора о проведении проверки, изданному в соответствии с поручением Президента Российской Федерации или Правительства Российской Федерации либо на основании требования прокурора о проведении внеплановой проверки в рамках надзора за исполнением законов поступившим в органы прокуратуры матери-
риалам и обращениям (5 — по объектам строительства, 5 — по объектам реконструкции);
18 проверок по иным основаниям, в соответствии с законодательством Российской Федерации (16 — по объектам строительства, 2 — по объектам реконструкции).

Количество проведенных проверок по территориальным управлением Ростехнадзора представлено на рис. 67. Наибольшее количество проверок в 2015 г. проведено Северо-Уральским, Енисейским, Сибирским, Западно-Уральским, Северо-Западным, Северо-Кавказским управлением. При этом Северо-Уральским управлением Ростехнадзора 3603 проверки (90 %) проведено по извещению об окончании строительства, Средне-Поволжским управлением Ростехнадзора 326 проверок (45 %), Западно-Уральским управлением Ростехнадзора 366 (35 %) проведено по извещению об окончании строительства. Остальными управлениями с высокими показателями по проведенным проверкам только порядка 25 % проверок проведено по такому основанию.

Рис. 67. Общее количество проверок по территориальным управлением Ростехнадзора

Нагрузка по количеству проведенных проверок на одного инспектора в территориальных управлениях показана на рис. 68.

Наибольшая нагрузка по количеству проведенных проверок в 2015 г. пришлась на инспекторов Северо-Уральского, Ленского, Средне-Поволжского управлений, что связано в Северо-Уральском управлении со значительно большим по сравнению с другими управлениями количеством объектов, а в Ленском управлении — с низкой штатной численностью (2 штатные единицы).

Количество проверок, проведенных Ростехнадзором в период с 2011 по 2015 г., представлено на рис. 69.
Рис. 68. Среднее количество проверок на 1 инспектора в территориальных управлениих

Необходимо отметить, что, учитывая снижение количества поднадзорных объектов в 2015 г., количество проведенных проверок уменьшилось незначительно, что свидетельствует о перераспределении внимания инспекторского состава в пользу более значимых объектов капитального строительства.

По результатам проведения 5314 проверок (40 % от общего количества) территориальными управлениями Ростехнадзора в отношении юридических лиц, индивиду-
альнах предпринимателей в 2015 г. было выявлено 48 202 нарушения (34 675 — при строительстве объектов, 13 527 — при реконструкции объектов), из них:

26 419 нарушений выявлено при проведении проверок по программе проверок (18 213 — при строительстве, 8206 — при реконструкции);

21 783 нарушения выявлено при проведении проверок по иным основаниям (16 463 — при строительстве, 5320 — при реконструкции) (рис. 70).

Соотношение количества проверок с выявленными нарушениями от общего числа проверок в процентном соотношении, которое отражает результативность проводимых территориальными управлениями контрольно-надзорных мероприятий, представлено на рис. 71.

Наиболее результативны проверки, проводимые Северо-Западным, Волжско-Окским, Приволжским, Межрегиональным технологическим управлениями. Наименьшее количество проверок, в результате которых выявлены нарушения, в 2015 г. проведено Ленским, Сахалинским, Северо-Уральским управлениями.

Среднее количество нарушений на одну результативную проверку по территориальным управлениям представлено на рис. 72. Наибольшее количество нарушений при проведении контрольно-надзорных мероприятий выявляется Приволж-
ским, Нижне-Волжским, Северо-Западным, Кавказским управлениями. Наименьшее число нарушений выявляется Северо-Восточным, Сахалинским, Печорским управлениями.

Основными видами нарушений, выявленных в рамках федерального государственного строительного надзора, явились:
отсутствие разрешения на строительство;
отсутствие государственной экспертизы проектной документации;
отклонения от проектной документации, получившей положительное заключение государственной экспертизы;
отсутствие свидетельств саморегулируемой организации о допуске к работам, оказывающим влияние на безопасность объектов капитального строительства, договоров и разрешительной документации;
нарушение сроков направления извещения о начале строительства и о сроках завершения работ, подлежащих проверке;
нарушения при ведении исполнительной документации (журналы работ, акты на скрытые работы и т.д.);
отсутствие или неудовлетворительное состояние строительного контроля на объекте;
нарушения организационного порядка строительства;
нарушения технологии строительства.

В сравнении с предыдущими годами количество выявленных нарушений распределено, как показано на рис. 73. Необходимо отметить, что при снижении количества проверок по сравнению с 2015 г. количество выявленных нарушений увеличилось (на 17%) и можно говорить о повышении качества проводимых контрольно-надзорных мероприятий.
По результатам проведения проверок выдано 5106 предписаний об устранении выявленных правонарушений (3630 — при строительстве, 1476 — при реконструкции), из них:

2974 предписания выдано при проведении проверок по программе проверок (2016 — при строительстве, 958 — при реконструкции);

2132 предписания выдано при проведении проверок по иным основаниям (1614 — при строительстве, 518 — при реконструкции) (рис. 74).

По результатам проведенных в 2015 г. проверок и выявленным административным правонарушениям наложено 4212 административных наказания, в том числе 3944 административных штрафа, 249 предупреждений, 19 административных приостановлений деятельности (рис. 75).
Количество административных наказаний, приходящихся на проверку с нарушениями, характеризующее полноту принимаемых мер по результатам проведенных контрольно-надзорных мероприятий, по территориальным управлениям представлено на рис. 76. Енисейским, Уральским, Северо-Уральским, Западно-Уральским, Северо-Западным управлениями только в половине случаев принимаются меры административного воздействия при выявлении нарушений.

Рис. 76. Количество административных наказаний, приходящихся на одну проверку

Таблица 115

<table>
<thead>
<tr>
<th>Ростехнадзора в 2015 г.</th>
<th>Количество наложенных административных штрафов по результатам проверок (ед.)</th>
<th>3944</th>
<th>Количество взысканных административных штрафов по результатам проверок (ед.)</th>
<th>3016</th>
</tr>
</thead>
<tbody>
<tr>
<td>в том числе:</td>
<td>на юридическое лицо</td>
<td>2376</td>
<td>на юридическое лицо</td>
<td>1784</td>
</tr>
</tbody>
</table>

© Оформление. ЗАО НТЦ ПБ, 2016
Годовой отчет о деятельности Федеральной службы
на должностное лицо 1564 на должностное лицо 1229
на индивидуального предпринимателя 3 на индивидуального предпринимателя 2
на гражданина 1 на гражданина 1

Количество взысканных штрафов от наложенных штрафов, % 76,47

сумма наложенных административных штрафов по результатам проверок (тыс. руб.) 398 508,3 сумма взысканных административных штрафов по результатам проверок (тыс. руб.) 266 057

в том числе:
на юридическое лицо 367 571 на юридическое лицо 242 695,4
на должностное лицо 30 870,3 на должностное лицо 23 294,6
на индивидуального предпринимателя 65 на индивидуального предпринимателя 65
на гражданина 2 на гражданина 2

количество взысканных штрафов от наложенных штрафов, % 76,47

В соответствии с пунктом 5 Положения об осуществлении государственного строительного надзора в Российской Федерации, утвержденного постановлением Правительства Российской Федерации от 1 февраля 2006 г. № 54, если при строительстве, реконструкции объектов капитального строительства предусмотрено осуществление государственного строительного надзора, то органом государственного строительного надзора в рамках государственного строительного надзора осуществляется федеральный государственный пожарный надзор, федеральный государственный санитарно-эпидемиологический надзор, а также, за исключением случаев, предусмотренных Градостроительным кодексом Российской Федерации, государственный экологический надзор.

Территориальными управлениями Ростехнадзора за 2015 г. в рамках осуществления государственного строительного надзора выялено 2800 нарушений в области экологии, 2596 нарушений в области санитарно-эпидемиологического благополучия, 4055 нарушений требований пожарной безопасности (рис. 77).

По итогам осуществления территориальными управлениями Ростехнадзора федерального государственного строительного надзора в 2015 г. в отношении 5548 объектов капитального строительства (4831 — по объектам строительства, 717 — по объектам реконструкции) выданы заключения о соответствии построенного, реконструированного объекта капитального строительства приборами учета используемых энергетических ресурсов.

Рис. 77. Количество выявленных нарушений
Количество выданных заключений о соответствии по территориальным управлениям Ростехнадзора и федеральным округам показано в табл. 116.

<table>
<thead>
<tr>
<th>Управления Ростехнадзора по федеральным округам</th>
<th>Количество выданных ЗОС объектов</th>
</tr>
</thead>
<tbody>
<tr>
<td>Центра́льный федеральный округ</td>
<td>216</td>
</tr>
<tr>
<td>МТУ Ростехнадзора</td>
<td>80</td>
</tr>
<tr>
<td>Центральное управление Ростехнадзора</td>
<td>57</td>
</tr>
<tr>
<td>Верхне-Донское управление Ростехнадзора</td>
<td>19</td>
</tr>
<tr>
<td>Приокское управление Ростехнадзора</td>
<td>60</td>
</tr>
<tr>
<td>Северо-Западный федеральный округ</td>
<td>256</td>
</tr>
<tr>
<td>Северо-Западное управление Ростехнадзора</td>
<td>184</td>
</tr>
<tr>
<td>Печорское управление Ростехнадзора</td>
<td>72</td>
</tr>
<tr>
<td>Южный федеральный округ</td>
<td>160</td>
</tr>
<tr>
<td>Нижне-Волжское управление Ростехнадзора</td>
<td>53</td>
</tr>
<tr>
<td>Северо-Кавказское управление Ростехнадзора</td>
<td>107</td>
</tr>
<tr>
<td>Приволжский федеральный округ</td>
<td>792</td>
</tr>
<tr>
<td>Западно-Уральское управление Ростехнадзора</td>
<td>354</td>
</tr>
<tr>
<td>Приволжское управление Ростехнадзора</td>
<td>130</td>
</tr>
<tr>
<td>Средне-Поволжское управление Ростехнадзора</td>
<td>275</td>
</tr>
<tr>
<td>Волжско-Окское управление Ростехнадзора</td>
<td>33</td>
</tr>
<tr>
<td>Уральский федеральный округ</td>
<td>3097</td>
</tr>
<tr>
<td>Северо-Уральское управление Ростехнадзора</td>
<td>3029</td>
</tr>
<tr>
<td>Уральское управление Ростехнадзора</td>
<td>68</td>
</tr>
<tr>
<td>Сибирский федеральный округ</td>
<td>528</td>
</tr>
<tr>
<td>Сибирское управление Ростехнадзора</td>
<td>198</td>
</tr>
<tr>
<td>Забайкальское управление Ростехнадзора</td>
<td>17</td>
</tr>
<tr>
<td>Енисейское управление Ростехнадзора</td>
<td>313</td>
</tr>
<tr>
<td>Дальневосточный федеральный округ</td>
<td>461</td>
</tr>
<tr>
<td>Дальневосточное управление Ростехнадзора</td>
<td>47</td>
</tr>
<tr>
<td>Сахалинское управление Ростехнадзора</td>
<td>11</td>
</tr>
<tr>
<td>Северо-Восточное управление Ростехнадзора</td>
<td>23</td>
</tr>
<tr>
<td>Ленское управление Ростехнадзора</td>
<td>380</td>
</tr>
<tr>
<td>Северо-Кавказский федеральный округ</td>
<td>38</td>
</tr>
<tr>
<td>Кавказское управление Ростехнадзора</td>
<td>38</td>
</tr>
<tr>
<td>Крымский федеральный округ</td>
<td></td>
</tr>
<tr>
<td>Крымское управление Ростехнадзора</td>
<td>0</td>
</tr>
</tbody>
</table>

При этом Северо-Уральским, Западно-Уральским, Средне-Поволжским, Ленским управлениями Ростехнадзора более 90 % заключений о соответствии выдано по объектам, подлежащим регистрации в государственном реестре опасных производственных объектов.

По сравнению с итогами осуществления территориальными управлениями Ростехнадзора федерального государственного строительного надзора количество выданных заключений о соответствии в 2011—2015 гг. показано на рис. 78.
Градостроительным кодексом Российской Федерации установлена обязанность для лиц, осуществляющих строительство, извещать органы государственного строительного надзора о каждом случае возникновения аварийных ситуаций на объектах капитального строительства.

В случае причинения вреда жизни или здоровью физических лиц, имуществу физических или юридических лиц при возникновении аварийной ситуации, обусловленной нарушениями законодательства о градостроительной деятельности при строительстве, реконструкции объектов, указанных в пункте 5.1 статьи 6 Градостроительного кодекса Российской Федерации, установление причин такого нарушения осуществляется в соответствии с постановлением Правительства Российской Федерации от 20 ноября 2006 г. № 702.

По итогам установления причин нарушения законодательства утверждается заключение, содержащее выводы:

- о причинах нарушения законодательства, в результате которого был причинен вред жизни или здоровью физических лиц, имуществу физических или юридических лиц и его размерах;
- об обстоятельствах, указывающих на виновность лиц;
- о необходимых мерах по восстановлению благоприятных условий жизнедеятельности человека.

В 2015 г. аварий на объектах капитального строительства, федеральный государственный строительный надзор при строительстве, реконструкции которых осуществляется Ростехнадзором, не зарегистрировано.

В 2014 г. на поднадзорных Ростехнадзору объектах капитального строительства произошло 2 аварии, расследование причин которых завершилось в 2015 г.

При строительстве Завода по производству цемента производительностью 5000 т клинкера в сутки, Ферзиковский район, Калужская область, в ходе пусконаладочных работ произошла авария на участке отгрузки цемента. Место аварии: силос це-
мент, который представляет собой стальной цилиндрический резервуар диаметром 10 метров, высотой 25,4 метра. Вес силоса 88 тонн (рис. 79).

Около 4 часов утра 22 октября 2014 г. произошло разрушение кольцевого опорного узла стального силоса цемента в местах контакта с балками опорной части несущих конструкций силоса (рамы). Силос заполнялся цементом, в результате разрушения опорных узлов силоса произошло обрушение конструкции.

Рис. 79, а, б. Авария на участке отгрузки цемента при строительстве Завода по производству цемента производительностью 5 т клинкера в сутки, Ферзиковский район, Калужская область

В момент обрушения силоса в непосредственной близости находилось два сотрудника обособленного подразделения ОАО «Лафарж Цемент», один из них пострадал и был госпитализирован.

Несчастный случай относится к категории «тяжелый», расследовался Государственной инспекцией труда в Калужской области Федеральной службы по труду и занятости Министерства труда и социальной защиты Российской Федерации.

22 декабря 2014 г. в 18 часов 45 минут в соответствии с программой комплексного опробования линейной части, а также с планами производства работ по заполнению участков нефтью начато заполнение нефтью участка км 185 — км 247 магистрального нефтепровода «Тихорецк—Туапсе-2», Ду700. Объем комплексного опробования систем и оборудования линейной частимагистрального нефтепровода определен на основании требований нормативной, проектной и конструкторской документации.
Контроль заполнения осуществлялся путем сопровождения поршней-разделителей (ПРВ-1-01 — 2 ед.) в составе 5 бригад сопровождения, укомплектованных приборами контроля, кроме того, 6 бригад осуществляли контроль за работой оборудования и выпуском газовоздушной смеси.

В 22 ч 40 мин бригадой № 4 по сопровождению поршней-разделителей обнаружена разгерметизация трубопровода на 243 км трассы. В 22 ч 42 мин произведена остановка заполнения и начато выполнение мероприятий по локализации и ликвидации последствий разгерметизации трубопровода на 243 км (закрытие линейных задвижек из РДП по системе телемеханизки).

В соответствии с Правилами установления федеральными органами исполнительной власти причин нарушения законодательства о градостроительной деятельности, утвержденными постановлением Правительства Российской Федерации от 20 ноября 2006 г. № 702, Северо-Кавказским управлением Ростехнадзора создана техническая комиссия для установления причин разрушения трубопровода с учетом проведения строительно-технической экспертизы участка строительства и экспертизы промышленной безопасности разрушенного трубопровода.

По результатам проведенных строительно-технических экспертиз, изучения проектной и исполнительной документации технической комиссией установлено:

1. Техническими причинами разгерметизации нефтепровода явились:
 - нарушения требований законодательства о градостроительной деятельности, в том числе технических регламентов (строительных норм и правил), проектной документации при осуществлении строительства объекта на участке (км 242 ПК 567+23 км 242 ПК 567+76);
 - возможная просадка трубопровода, выполненного в нарушение проектной документации, с образованием излома («гофры») на участке ПК567+27,7 вследствие сложных гидрометеорологических условий в период с 08.07.2014 по 09.07.2014 в районе г. Туапсе, которые могли способствовать размытию дна траншеи с уложенным магистральным нефтепроводом;

Рис. 80, а, б. Разлив нефти в результате разгерметизации нефтепровода при сходе оползня при строительстве объекта капитального строительства «МН «Тихорецк–Туапсе-2»
заклинивание наткнувшегося на преграду в трубопроводе поршня, послужившее возникновению продольных и поперечных нагрузок, приведших к упруго пластичному деформированию (выше и ниже «застывшего» поршня), с последующим поперечным разрывом «тела» трубы и раскрытием в околошовной зоне продольного сварного соединения.

2. Причинами, способствующими аварии, явились:
комплекс системных нарушений, допущенных при выполнении строительно-монтажных работ генеральным подрядчиком;
недостаточное и ненадлежащее качество осуществления заказчиком и генеральным подрядчиком строительного контроля;
недостаточное и ненадлежащее качество осуществления авторского надзора.

Центральным аппаратом Ростехнадзора в 2015 г. проведена большая работа по актуализации нормативных правовых актов, регламентирующих деятельность по осуществлению государственного строительного надзора.

1. Порядок проведения проверок при осуществлении государственного строительного надзора и выдачи заключений о соответствии построенных, реконструированных, отремонтированных объектов капитального строительства требованиям технических регламентов (норм и правил), иных нормативных правовых актов, проектной документации, утвержденный приказом Федеральной службы по экологическому, технологическому и атомному надзору от 26 декабря 2006 г. № 1129, приказом Ростехнадзора от 14 июля 2015 г. № 273 (зарегистрирован в Минюсте России 13 ноября 2015 г.) приведен в соответствие с действующими редакциями Градостроительного кодекса Российской Федерации и Положения об осуществлении государственного строительного надзора в Российской Федерации, утвержденного постановлением Правительства Российской Федерации от 1 февраля 2006 г. № 54, в части уточнения формулировок, а также введено требование о необходимости проверки должностным лицом органа государственного строительного надзора документов, подтверждающих соблюдение требований законодательства в области охраны окружающей среды, пожарной безопасности и санитарно-эпидемиологического благополучия населения, требований энергетической эффективности и требований оснащенности объекта капитального строительства приборами учета использовемых энергетических ресурсов.

2. В Порядке формирования и ведения дел при осуществлении государственного строительного надзора, утвержденном приказом Федеральной службы по экологическому, технологическому и атомному надзору от 26 декабря 2006 г. № 1130, приказом Ростехнадзора от 21 октября 2015 г. № 417 (зарегистрирован в Минюсте России 8 декабря 2015 г.), уточнены основания для формирования надзорного дела при осуществлении государственного строительного надзора, внесены изменения в образцы журналов, в которых регистрируются все составленные или полученные при осуществлении государственного строительного надзора документы, указана возможность их ведения на бумажном носителе или в электронном виде с использованием соответствующего аппаратно-программного обеспечения, а также возможность представления в орган государственного строительного надзора проектной документации на объект капитального строительства в электронном виде.

3. В Административный регламент по исполнению Федеральной службой по экологическому, технологическому и атомному надзору государственной функции по осуществлению федерального государственного строительного надзора при строи-
тельстве, реконструкции объектов капитального строительства, указанных в пункте 5.1 статьи 6 Градостроительного кодекса Российской Федерации, за исключением тех объектов, в отношении которых осуществление государственного строительного надзора указаны Президентом Российской Федерации возложено на иные федеральные органы исполнительной власти, утвержденный приказом Федеральной службы по экологическому, технологическому и атомному надзору от 31 января 2013 г. № 38, приказом Ростехнадзора от 22 декабря 2015 г. № 526 (зарегистрирован Минюстом России 20 января 2016 г.) внесены изменения в разделы:

«Права и обязанности должностных лиц при осуществлении государственного надзора» (введены ограничения прав должностных лиц Ростехнадзора при проведении проверок);

«Права и обязанности лиц, в отношении которых осуществляются мероприятия по надзору» (расширены права юридических лиц и индивидуальных предпринимателей, в отношении которых осуществляются мероприятия по надзору);

«Порядок информирования об исполнении государственной функции» (внесение в федеральную государственную информационную систему «единый реестр проверок» информации о проверках юридических лиц и индивидуальных предпринимателей);

«Проведение проверок при исполнении государственной функции» (возможность проведения документарных проверок при осуществлении федерального государственного строительного надзора; формирование комплексных рабочих групп с целью осуществления федерального государственного строительного надзора при строительстве, реконструкции объектов использования атомной энергии (в том числе ядерных установок, пунктов хранения ядерных материалов и радиоактивных веществ), опасных производственных объектов, гидротехнических сооружений).

4. Требования к составу и порядку ведения исполнительной документации при строительстве, реконструкции, капитальном ремонте объектов капитального строительства и требования, предъявляемые к актам освидетельствования работ, конструкций, участков сетей инженерно-технического обеспечения, утвержденные приказом Федеральной службы по экологическому, технологическому и атомному надзору от 26 декабря 2006 г. № 1128, приказом Ростехнадзора от 26 октября 2015 г. № 428 (в настоящее время находится на регистрации в Минюсте России), приведены в соответствие с действующими редакциями Градостроительного кодекса Российской Федерации и Положения об осуществлении государственного строительного надзора в Российской Федерации, утвержденного постановлением Правительства Российской Федерации от 1 февраля 2006 г. № 54, в части уточнения формулировок, введена необходимость указания реквизитов свидетельств о допуске к видам работ по строительству, реконструкции с указанием саморегулируемой организации, его выдавшей.

Уточнен порядок оформления исполнительной документации представителями застройщика, технического заказчика и лицами, осуществляющими строительство, в соответствии с Положением о проведении строительного контроля при осуществлении строительства, реконструкции и капитального ремонта объектов капитального строительства, утвержденного постановлением Правительства Российской Федерации от 21 июня 2010 г. № 468.

Также в 2015 г. разработаны Методические рекомендации по организации и проведению проверок при осуществлении государственного строительного надзора и
выдачи заключений о соответствии построенных, реконструированных объектов капитального строительства требованиям технических регламентов, иных нормативных правовых актов и проектной документации, в том числе требованиям энергетической эффективности и требованиям оснащенности объекта капитального строительства приборами учета используемых энергетических ресурсов, утвержденные приказом Ростехнадзора от 18 августа 2015 г. № 320.

Центральный аппарат Ростехнадзора постоянно ведет работу по сопровождению деятельности территориальных органов.

1. Управлением государственного строительного надзора ведется постоянный мониторинг информации, поступающей от территориальных органов в соответствии с приказом Ростехнадзора от 20 апреля 2015 г. № 157 «О предоставлении отчетной информации об осуществлении государственного строительного надзора».

2. Анализируются результаты осуществления государственного строительного надзора на объектах авиационной инфраструктуры, включая взлетно-посадочные полосы, Центральной кольцевой автомобильной дороги, объектах капитального строительства, входящих в состав проекта «Южный поток».

3. Созданы рабочие группы и ведется анализ деятельности территориальных органов по осуществлению государственного строительного надзора по следующим видам поднадзорных объектов:
 - объекты капитального строительства, строящиеся, реконструируемые в рамках Программы подготовки и проведения Чемпионата мира по футболу ФИФА 2018 года в Российской Федерации;
 - объекты капитального строительства, строящиеся, реконструируемые в рамках инвестиционного проекта «Модернизация железнодорожной инфраструктуры Байкало-Амурской и Транссибирской железнодорожных магистралей с развитием пропускных и провозных способностей»;
 - объекты капитального строительства, строящиеся, реконструируемые в рамках проекта развития производства сжиженного природного газа на полуострове Ямал.

Также в 2015 г. работниками центрального аппарата принято участие в проверках деятельности Правительства Москвы по реализации переданных Ростехнадзором полномочий в области государственного строительного надзора и иных видов государственного контроля (надзора) при проектировании, строительстве, реконструкции, эксплуатации, выводе из эксплуатации и ликвидации объектов Московского метрополитена.

Деятельность Правительства Москвы в области государственного строительного надзора

Соглашением между Федеральной службой по экологическому, технологическому и атомному надзору и Правительством Москвы, утвержденным распоряжением
Правительства Российской Федерации от 26 ноября 2012 г. № 2193-р (далее — Соглашение), Правительству Москвы передана часть полномочий Федеральной службы по экологическому, технологическому и атомному надзору в области государственного строительного надзора и иных видов государственного контроля (надзора) при проектировании, строительстве, реконструкции, эксплуатации, выводе из эксплуатации и ликвидации объектов Московского метрополитена.

Уполномоченным органом Правительства Москвы, осуществляющим деятельность по государственному строительному надзору на объектах Московского метрополитена, является Комитет государственного строительного надзора города Москвы.

По информации, представленной Комитетом государственного строительного надзора города Москвы, под надзором находится 57 объектов строительства метрополитена.

За 2015 г. проведено 517 проверок (482 — по строительству, 35 — по реконструкции), из них 300 проверок по программе проверок (277 — по строительству, 23 — по реконструкции), 217 — по иным основаниям (205 — по строительству, 12 — по реконструкции).

По результатам проведения 317 проверок (в 60 % случаев) выявлено 913 нарушений обязательных требований, из них 830 по программе проверок (699 — по строительству, 131 — по реконструкции), 83 — по иным основаниям (73 — по строительству, 10 — по реконструкции), выдано 333 предписания об устранении нарушений, наложено 337 административных штрафов на общую сумму 51 780 тыс. руб.

В 2015 г. выдано 2 заключения о соответствии требованиям технических регламентов и проектной документации, в том числе требованиям энергетической эффективности и требованиям оснащенности объекта капитального строительства приборами учета используемых энергетических ресурсов.

2.2.22.2. Надзор за деятельностью саморегулируемых организаций в области инженерных изысканий, архитектурно-строительного проектирования, строительства, реконструкции, капитального ремонта объектов капитального строительства, а также ведение государственного реестра указанных организаций

Постановлением Правительства Российской Федерации от 19 ноября 2008 г. № 864 «О мерах по реализации Федерального закона от 22 июля 2008 г. № 148-ФЗ «О внесении изменений в Градостроительный кодекс Российской Федерации и отдельные законодательные акты Российской Федерации» на Федеральную службу по экологическому, технологическому и атомному надзору возложены функции по государственному контролю (надзору) за деятельностью саморегулируемых организаций в области инженерных изысканий, архитектурно-строительного проектирования, строительства, реконструкции, капитального ремонта объектов капитального строительства, а также по ведению государственного реестра указанных организаций.

Ведение государственного реестра саморегулируемых организаций в области инженерных изысканий, архитектурно-строительного проектирования, строительства, реконструкции, капитального ремонта объектов капитального строительства (далее — саморегулируемые организации) осуществляется только центральным аппаратом Ростехнадзора.
По состоянию на 31 декабря 2015 г. в государственном реестре саморегулируемых организаций содержатся сведения о 502 саморегулируемых организациях, имеющих право выдачи свидетельств о допуске к работам, которые оказывают влияние на безопасность объектов капитального строительства (табл. 117).

Таблица 117

Сведения о внесении и исключении сведений о саморегулируемых организациях в государственный реестр саморегулируемых организаций

<table>
<thead>
<tr>
<th>Год</th>
<th>Количество саморегулируемых организаций, сведения о которых внесены в государственный реестр саморегулируемых организаций</th>
<th>Количество саморегулируемых организаций, сведения о которых исключены из государственного реестра саморегулируемых организаций</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Всего</td>
<td>основаны на членстве лиц, осуществляющих строительство, реконструкцию, капитальный ремонт объектов капитального строительства</td>
</tr>
<tr>
<td>2009</td>
<td>293</td>
<td>165</td>
</tr>
<tr>
<td>2010</td>
<td>129/2</td>
<td>65/2</td>
</tr>
<tr>
<td>2011</td>
<td>18</td>
<td>9</td>
</tr>
<tr>
<td>2012</td>
<td>33</td>
<td>17</td>
</tr>
<tr>
<td>2013</td>
<td>26</td>
<td>16</td>
</tr>
<tr>
<td>2014</td>
<td>11</td>
<td>4</td>
</tr>
<tr>
<td>2015</td>
<td>1/7</td>
<td>1/4</td>
</tr>
<tr>
<td>Всего:</td>
<td>511/9</td>
<td>277/6</td>
</tr>
<tr>
<td>Итого на 31.12.2015:</td>
<td>502</td>
<td>271</td>
</tr>
</tbody>
</table>

Таблица 118

Сведения о рассмотрении заявлений некоммерческих организаций о присвоении статуса саморегулируемой организации (предоставления права выдачи свидетельств о допуске к определенному виду или видам работ)

<table>
<thead>
<tr>
<th>Год</th>
<th>Количество заявлений, поданных в Ростехнадзор от некоммерческих организаций</th>
<th>Количество саморегулируемых организаций, сведения о которых внесены в государственный реестр</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009</td>
<td>294</td>
<td>294</td>
</tr>
<tr>
<td>2010</td>
<td>128</td>
<td>128</td>
</tr>
<tr>
<td>2011</td>
<td>62</td>
<td>18</td>
</tr>
<tr>
<td>2012</td>
<td>84</td>
<td>34</td>
</tr>
<tr>
<td>2013</td>
<td>88</td>
<td>23</td>
</tr>
<tr>
<td>2014</td>
<td>88</td>
<td>12</td>
</tr>
<tr>
<td>2015</td>
<td>7</td>
<td>1</td>
</tr>
</tbody>
</table>

В соответствии с требованиями Градостроительного кодекса Российской Федерации саморегулируемые организации направляют в Ростехнадзор информацию о внесении изменений в сведения, содержащиеся в государственном реестре саморегулируемых организаций. В 2015 г. в Ростехнадзор поступило и рассмотрено 32 562 уведомления саморегулируемых организаций.
Распределение саморегулируемых организаций по федеральным округам Российской Федерации на 31 декабря 2015 г.

<table>
<thead>
<tr>
<th>Федеральный округ</th>
<th>Количество зарегистрированных на территории федерального округа саморегулируемых организаций</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>в сфере строительства</td>
<td>в сфере архитектурно-строительного проектирования</td>
</tr>
<tr>
<td>Центральный федеральный округ</td>
<td>132</td>
<td>91</td>
</tr>
<tr>
<td>Северо-Западный федеральный округ</td>
<td>46</td>
<td>38</td>
</tr>
<tr>
<td>Южный федеральный округ</td>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>Северо-Кавказский федеральный округ</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>Приволжский федеральный округ</td>
<td>28</td>
<td>24</td>
</tr>
<tr>
<td>Уральский федеральный округ</td>
<td>13</td>
<td>8</td>
</tr>
<tr>
<td>Сибирский федеральный округ</td>
<td>20</td>
<td>13</td>
</tr>
<tr>
<td>Дальневосточный федеральный округ</td>
<td>11</td>
<td>4</td>
</tr>
<tr>
<td>Крымский федеральный округ</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Итого:</td>
<td>271</td>
<td>191</td>
</tr>
</tbody>
</table>

Таблица 120
Распределение саморегулируемых организаций по поднадзорности территориальным управлениям Ростехнадзора

<table>
<thead>
<tr>
<th>Территориальное управление</th>
<th>Количество зарегистрированных на поднадзорной территории саморегулируемых организаций</th>
<th>Всего</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>в сфере строительства</td>
<td>в сфере архитектурно-строительного проектирования</td>
</tr>
<tr>
<td>Межрегиональное технологическое управление</td>
<td>99</td>
<td>16</td>
</tr>
<tr>
<td>Центральное управление</td>
<td>17</td>
<td>1</td>
</tr>
<tr>
<td>Верхне-Донское управление</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>Приокское управление</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Северо-Западное управление</td>
<td>45</td>
<td>12</td>
</tr>
<tr>
<td>Печорское управление</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Нижне-Волжское управление</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Северо-Кавказское управление</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>Кавказское управление</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>Волжско-Окское управление</td>
<td>5</td>
<td>2</td>
</tr>
</tbody>
</table>
по экологическому, технологическому и атомному надзору в 2015 году

Информация о саморегулируемых организациях в сфере строительства, сведения о которых внесены в государственный реестр саморегулируемых организаций, доступна для ознакомления на официальном сайте Ростехнадзора в информационно-телекоммуникационной сети «Интернет» по адресу www.sro.gosnadzor.ru.

Предоставление сведений из государственного реестра саморегулируемых организаций осуществляется в соответствии с Административным регламентом Федеральной службы по экологическому, технологическому и атомному надзору по предоставлению государственной услуги по предоставлению сведений из государственного реестра саморегулируемых организаций в области инженерных изысканий, архитектурно-строительного проектирования, строительства, реконструкции, капитального ремонта объектов капитального строительства, утвержденным приказом Ростехнадзора от 21 июля 2015 г. № 281 (зарегистрирован Минюстом России 17 августа 2015 г., регистрационный № 38556).

В 2015 г. в Ростехнадзор было подано 2328 запросов от юридических и физических лиц, по которым предоставлено 5813 выписок из государственного реестра саморегулируемых организаций как в отношении саморегулируемых организаций, так и их членов (выписки из государственного реестра саморегулируемых организаций в отношении членов саморегулируемой организации выдавались до вступления в силу вышеуказанного Административного регламента).

Постановлением Правительства Российской Федерации от 22 ноября 2012 г. № 1202 «Об утверждении Положения о государственном надзоре за деятельностью саморегулируемых организаций» Ростехнадзор определен органом государственного надзора за деятельностью саморегулируемых организаций в области инженерных изысканий, архитектурно-строительного проектирования, строительства, реконструкции и капитального ремонта объектов капитального строительства.

В соответствии с требованиями Административного регламента по исполнению Федеральной службой по экологическому, технологическому и атомному надзору государственной функции по осуществлению государственного надзора за дея-

<table>
<thead>
<tr>
<th>Территориальное управление</th>
<th>Количество зарегистрированных на поднадзорной территории саморегулируемых организаций</th>
<th>Всего</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>в сфере строительства</td>
<td>в сфере архитектурно-строительного проектирования</td>
</tr>
<tr>
<td>Западно-Уральское управление</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>Приволжское управление</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Средне-Поволжское управление</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Северо-Уральское управление</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Уральское управление</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>Забайкальское управление</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Енисейское управление</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>Сибирское управление</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>Дальневосточное управление</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>Ленское управление</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Сахалинское управление</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Северо-Восточное управление</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Крымское управление</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>
Годовой отчет о деятельности Федеральной службы

тельностью саморегулируемых организаций в области инженерных изысканий, архитектурно-строительного проектирования, строительства, реконструкции и капитального ремонта объектов капитального строительства, утвержденного приказом Ростехнадзора от 25 июля 2013 г. № 325 (зарегистрирован в Минюсте России 4 февраля 2014 г., регистрационный № 31219), государственная функция по надзору за деятельностью саморегулируемых организаций в области инженерных изысканий, архитектурно-строительного проектирования, строительства, реконструкции и капитального ремонта объектов капитального строительства исполняется Ростехнадзором и его территориальными органами.

Ростехнадзором и территориальными органами ежегодно проводятся плановые и внеплановые проверки деятельности саморегулируемых организаций.

В 2015 г. в общей сложности проведено 355 плановых и внеплановых проверок в отношении 177 саморегулируемых организаций, при этом работники центрального аппарата Ростехнадзора приняли непосредственное участие при проведении 16 проверок деятельности саморегулируемых организаций в сфере строительства (рис. 81).

![Рис. 81. Сведения о проведенных проверках саморегулируемых организаций](image)

В 2015 г. 46 внеплановых проверок саморегулируемых организаций было инициировано по обращениям граждан, 15 внеплановых проверок проведено по поручению Заместителя Председателя Правительства Российской Федерации Д.О. Рогозина о проведении внеплановой проверки саморегулируемых организаций, выдавших лицам, выполнявшим работы по капитальному ремонту 242 учебного центра Минобороны России (г. Омск), свидетельства о допуске к работам, включая проверку соблюдения этими саморегулируемыми организациями требований к выдаче свидетельств и соблюдения требований стандартов данных организаций и правил саморегулирования.

Общее количество выявленных в результате контрольно-надзорных мероприятий нарушений составило более 1300.

По результатам проведенных Ростехнадзором контрольно-надзорных мероприятий установлено, что саморегулируемыми организациями чаще всего допускаются нарушения основных требований законодательства Российской Федерации о градостроительной деятельности и о саморегулируемых организациях в отношении выдачи свидетельств о допуске к работам, которые оказывают влияние на безопасность объ-
ектов капитального строительства и пра-
вил контроля за деятельностью членов само-
регулируемых организаций, такие, как:
несоблюдение требований в части объединения в составе саморегулируемой
организации необходимого количества
индивидуальных предпринимателей или
юридических лиц и формирования ком-
пенсационного фонда саморегулируемой
организации в установленном размере;
несоблюдение порядка приема в члены
саморегулируемой организации и выдачи
(замены) свидетельств о допуске к опре-
деленному виду или видам работ, порядка
исключения сведений из реестра членов;
уплата взносов в компенсационный
фонд третьими лицами или в рассрочку;
несоблюдение установленных требо-
ваний по осуществлению саморегули-
руемой организацией контроля за дея-
tельностью своих членов (проверки про-
водятся с нарушением установленных
сроков либо вообще не проводятся, на
рассмотрение жалобы на действия члена
саморегулируемой организации не при-
gлашается лицо, направившее жалобу,
не применяются соответствующие меры
dисциплинарного взыскания в случае
выявления нарушений);
неприменение предусмотренных зако-
нодательством мер дисциплинарного воз-
действия в виде прекращения действия
свидетельства в отношении члена саморе-
gулируемой организации, ранее привле-
ченного к ответственности в виде прио-
становления действия свидетельства и не
устранившего допущенные нарушения;
нарушение установленных требований по ведению дел членов саморегулируе-
мой организации;
нарушение требований информационной открытости.
По результатам 124 контрольно-надзорных мероприятий Ростехнадзором в от-
ношении юридических лиц саморегулируемых организаций и их должностных лиц
возбуждены дела об административных правонарушениях, ответственность за со-
вершение которых предусмотрена статьями 14.52, частью 2 статьи 19.4.1, частью
1 статьи 19.5 Кодекса Российской Федерации об административных правонару-
шениях.
Общая сумма наложенных административных штрафов составила более 2,6 млн руб.
В 2015 г. Ростехнадзором из государственного реестра саморегулируемых организаций по различным основаниям исключены сведения о 7 саморегулируемых организациях (4 саморегулируемые организации, основанные на членстве лиц, осуществляющих строительство, 3 саморегулируемые организации, основанные на членстве лиц, осуществляющих подготовку проектной документации), в том числе 4 саморегулируемые организации исключены во внесудебном порядке в соответствии со статьей 55.2 Градостроительного кодекса Российской Федерации.

В 2015 г. проведена работа по внесению изменений в действующие нормативные правовые акты и разработка новых нормативных правовых актов, регулирующих деятельность по осуществлению надзора за саморегулируемыми организациями в сфере строительства, а именно:

приказ Ростехнадзора от 25 марта 2015 г. № 114 «Об утверждении формы единого реестра членов саморегулируемых организаций» (зарегистрирован Минюстом России 6 апреля 2015 г., рег. № 36736);

приказ Ростехнадзора от 21 июля 2015 г. № 281 «Об утверждении Административного регламента по предоставлению сведений из государственного реестра саморегулируемых организаций в области инженерных изысканий, архитектурно-строительного проектирования, строительства, реконструкции, капитального ремонта объектов капитального строительства» (зарегистрирован Минюстом России 17 августа 2015 г., рег. № 38556);

приказ Ростехнадзора от 30 октября 2015 г. № 443 «О внесении изменений в Административный регламент по исполнению Федеральной службой по экологическому, технологическому и атомному надзору государственной функции по осуществлению государственного надзора за деятельностью саморегулируемых организаций в области инженерных изысканий, архитектурно-строительного проектирования, строительства, реконструкции и капитального ремонта объектов капитального строительства», утвержденный приказом Федеральной службы по экологическому, технологическому и атомному надзору от 25 июля 2013 г. № 325» (зарегистрирован в Минюсте России 25 января 2016 г. № 40755);

в стадии согласования находится проект приказа Ростехнадзора «Об утверждении Административного регламента Федеральной службы по экологическому, технологическому и атомному надзору по предоставлению государственной услуги по внесению сведений в государственный реестр саморегулируемых организаций в области инженерных изысканий, архитектурно-строительного проектирования, строительства, реконструкции, капитального ремонта объектов капитального строительства».

Ростехнадзором в инициативном порядке на основе имеющейся правоприменительной практики и результатов контрольно-надзорной деятельности в отношении саморегулируемых организаций в сфере строительства и в развитие положений принятого в 2014 году Федерального закона № 359-ФЗ «О внесении изменений в Градостроительный кодекс Российской Федерации (в части совершенствования законодательства о саморегулируемых организациях в сфере строительства), 20 января 2016 г. законопроект № 938845-6 одобрен Государственной Думой Федерального собрания Российской Федерации в первом чтении.

Ростехнадзором в инициативном порядке на основе имеющейся правоприменительной практики и результатов контрольно-надзорной деятельности в отношении саморегулируемых организаций в сфере строительства и в развитие положений принятого в 2014 году Федерального закона № 359-ФЗ «О внесении изменений в Градостроительный кодекс Российской Федерации (в части совершенствования законодательства о саморегулируемых организациях в сфере строительства), 20 января 2016 г. законопроект № 938845-6 одобрен Государственной Думой Федерального собрания Российской Федерации в первом чтении.

Годовой отчет о деятельности Федеральной службы...
2.3. Организация и результаты экспертной деятельности

2.3.1. Экспертиза безопасности объектов использования атомной энергии

Правовые основы, цель и направления экспертизы безопасности (экспертизы обоснования безопасности) объектов использования атомной энергии и (или) видов деятельности в области использования атомной энергии. Формирование и функционирование системы проведения экспертизы. Проблемы экспертизы безопасности и пути их решения. Об оценке применимости программных средств

Экспертиза безопасности (экспертиза обоснования безопасности), выполняемая в рамках процедуры лицензирования Ростехнадзором видов деятельности в области использования атомной энергии, проводится с целью оценки соответствия представленного соискателем лицензии или владельцем лицензии (лицензиатом) (далее — заявитель) обоснования безопасности объекта использования атомной энергии (ядерной установки, радиационного источника, пункта хранения ядерных материалов и радиоактивных веществ, радиоактивных отходов и др.), сведений о его фактическом состоянии, обоснования безопасности заявляемого вида деятельности в области использования атомной энергии законодательству Российской Федерации, нормам и правилам в области использования атомной энергии, современному уровню развития науки, техники и производства. При экспертизе безопасности оценивается полнота предусмотренных заявителем мер технического и организационного характера по обеспечению ядерной и радиационной безопасности при осуществлении заявленной деятельности.

Необходимость проведения экспертизы безопасности в области использования атомной энергии определена:

Федеральным законом от 21 ноября 1995 г. № 170-ФЗ «Об использовании атомной энергии»;

Положением о лицензировании деятельности в области использования атомной энергии, утвержденным постановлением Правительства Российской Федерации № 280 от 29 марта 2013 г.

Содержательные и организационные аспекты, касающиеся проведения экспертизы безопасности, установлены:

Положением о порядке проведения экспертизы безопасности (экспертизы обоснования безопасности) объектов использования атомной энергии и (или) видов деятельности в области использования атомной энергии, утвержденным приказом Ростехнадзора от 21 апреля 2014 г. № 160;

Административным регламентом предоставления исполнения Федеральной службой по экологическому, технологическому и атомному надзору государственной услуги по лицензированию деятельности в области использования атомной энергии, утвержден приказом Федеральной службы по экологическому, технологическому и атомному надзору от 8 октября 2014 № 453, зарегистрирован Министерством юстиции Российской Федерации 20 марта 2015 г., рег. № 36496 (далее — Административный регламент).

Каждая экспертиза безопасности проводится одной из экспертных организаций по утвержденному Ростехнадзором заданию на проведение экспертизы, включающему тематические вопросы экспертизы, требования к экспертному заключению и
его представлению в Ростехнадзор, а также перечень документов заявителя, подлежащих экспертизе.

Экспертизе безопасности подлежат представляемые заявителями в Ростехнадзор при подаче заявлений на получение лицензий, переоформление лицензий (условий действия лицензий) документы, обосновывающие безопасность объектов использования атомной энергии и (или) заявленных видов деятельности в области использования атомной энергии и содержащие сведения о фактическом состоянии объектов использования атомной энергии. Требования к составу и содержанию этих документов установлены Административным регламентом.

Экспертиза безопасности проводится экспертными организациями, имеющими лицензии Ростехнадзора на право проведения экспертиз безопасности (экспертиз обоснования безопасности) объектов использования атомной энергии и (или) видов деятельности в области использования атомной энергии. Согласно Административному регламенту, информация об экспертных организациях, имеющих соответствующие лицензии Ростехнадзора, размещается на интернет-сайте www.gosnadzor.ru. Заявители самостоятельно выбирают экспертную организацию из числа имеющих соответствующие лицензии Ростехнадзора.

К проведению экспертизы не могут привлекаться лица, участвовавшие в разработке представленных заявителем в Ростехнадзор документов, обосновывающих обеспечение безопасности объекта использования атомной энергии и (или) вида деятельности в области использования атомной энергии. При наличии в подлежащих экспертизе документах сведений, составляющих государственную тайну, экспертиза этих документов проводится экспертными организациями, имеющими право работы с такими сведениями.

По результатам экспертизы безопасности экспертная организация составляет экспертное заключение об обосновании безопасности объекта использования атомной энергии и (или) видов деятельности в области использования атомной энергии. Экспертное заключение утверждается руководителем экспертной организации, заверяется печатью этой организации и направляется в Ростехнадзор, где оценивается на соответствие требованиям задания на проведение экспертизы, после чего Ростехнадзор письменно уведомляет экспертную организацию о принятии или об отказе в принятии экспертного заключения. Датой завершения экспертизы является дата письменного уведомления Ростехнадзором о принятии экспертного заключения.

Действующая в Ростехнадзоре система экспертизы безопасности представляет собой совокупность порядка проведения экспертизы, технических экспертов, правил и критериев оценки, методик и средств, применяемых при экспертизе. Ростехнадзор осуществляет управление системой экспертизы безопасности посредством: разработки нормативных документов и руководств по безопасности; выдачи организациям лицензий на право проведения экспертизы; регулярной оценки эффективности системы экспертизы безопасности; организации научных исследований для развития методов экспертизы; организации баз данных по объектам использования атомной энергии; учета международного опыта проведения экспертизы безопасности.
Основные итоги экспертизы безопасности объектов использования атомной энергии (ОИАЭ) в 2015 году

Экспертиза безопасности, организованная Управлением по регулированию безопасности ядерных станций и исследовательских ядерных установок центрального аппарата Ростехнадзора

В 2015 г. экспертизу безопасности проводили следующие экспертные организации, имеющие соответствующие лицензии Ростехнадзора:

ФБУ «НТЦ ЯРБ» (г. Москва); ЗАО «НЦ «Техэкспертиза» (г. Москва); ООО НТЦ «ИНТЭК» (г. Москва); ФГУП ВО «Безопасность» (г. Москва); ООО «РЭСцентр» (г. С.-Петербург); ООО «НЭЦЯТ» (г. Нижний Новгород); ООО «РусАтомЭкспертиза» (г. Москва); ООО «ИЦ «Р.А.Н.» (г. С.-Петербург); ООО «МАТЭК» (г. Обнинск).

Всего было организовано проведение 293 экспертиз безопасности, из которых 259 выполнены ФБУ «НТЦ ЯРБ». По видам деятельности 34 экспертизы безопасности, выполненные инными экспертными организациями, распределились следующим образом:

- проектирование и конструирование ядерных установок — 11;
- проведение экспертизы безопасности ОИАЭ и (или) видов деятельности в области использования атомной энергии — 7;
- эксплуатация ядерных установок и пунктов хранения ядерных материалов — 9;
- вывод из эксплуатации ядерных установок и пунктов хранения ядерных материалов — 2;
- использование ядерных материалов и радиоактивных веществ при проведении научно-исследовательских и опытно-конструкторских работ — 1;
- конструирование и изготовление оборудования для ядерных установок — 4.

Экспертиза безопасности, организованная Управлением по регулированию безопасности объектов ядерного топливного цикла, ядерных энергетических установок судов и радиационно опасных объектов центрального аппарата Ростехнадзора

В 2015 г. экспертизу безопасности проводили следующие экспертные организации, имеющие соответствующие лицензии Ростехнадзора:

ФБУ «НТЦ ЯРБ» (г. Москва); ФГУП ВО «Безопасность» (г. Москва); ООО «РЭСцентр» (г. Санкт-Петербург); ООО «МАТЭК» (г. Обнинск); ООО «Эксперт-Атом» (г. Балаково); ООО «Атомэксперт24» (г. Москва); ЗАО «НЦ «Техэкспертиза» (г. Москва); ООО «ИЦ «Р.А.Н.» (г. Санкт-Петербург); ООО НТЦ «ИНТЭК» (г. Москва); ООО «ИЦЭС» (г. Москва).

Всего было организовано проведение 115 экспертиз безопасности, из которых 37 выполнены ФБУ «НТЦ ЯРБ».

По видам деятельности 78 экспертиз безопасности, выполненных инными экспертными организациями, распределились следующим образом:

- проектирование и конструирование радиационных источников — 3;
- проведение экспертизы безопасности (экспертизы обоснования безопасности) объектов использования атомной энергии и видов деятельности в области использования атомной энергии — 6;
- проекттирование и конструирование ядерных установок, радиационных источников, пунктов хранения ЯМ и РВ, хранилищ РАО — 14;
- конструирование оборудования — 1;
эксплуатация пункта хранения РВ и РАО — 2;
эксплуатация пункта хранения ЯМ — 6;
эксплуатация ядерных установок — 8;
сооружение ядерных установок — 1;
обращение с ЯМ и РВ при производстве, использовании, переработке, транспортировании и хранении ЯМ и РВ — 28;
обращение с радиоактивными отходами при их хранении, переработке, транспортировании — 4;
конструирование и изготовление оборудования для хранилищ РАО — 10;
эксплуатация радиационных источников — 1;
использование ядерных материалов и (или) радиоактивных веществ при проведении научно-исследовательских и опытно-конструкторских работ — 2;
вывод из эксплуатации сооружений — 3;
размещение, сооружение, эксплуатация и вывод из эксплуатации ядерных установок, радиационных источников и пунктов хранения ЯМ и РВ, хранилищ радиоактивных отходов — 26.

В 2015 г. центральным аппаратом Ростехнадзора по результатам проведенных экспертиз безопасности принято 3 решения об отказе в выдаче лицензии.

Экспертизы безопасности, организованные Управлением специальной безопасности центрального аппарата Ростехнадзора

Управлением специальной безопасности в 2015 г. в рамках выполнения государственной функции по лицензированию деятельности в области использования атомной энергии рассматривалось экспертное заключение ООО «АТЭКС» (г. Москва).

Всего была организована одна экспертиза безопасности деятельности в области использования атомной энергии — проектирование и конструирование ядерных установок, радиационных источников, пунктов хранения ядерных материалов и радиоактивных веществ, хранилищ радиоактивных отходов (в части физической защиты).

Таким образом, всего в 2015 г. управлениями центрального аппарата Ростехнадзора в рамках процедуры лицензирования видов деятельности в области использования атомной энергии были организованы 458 экспертиз безопасности.

Экспертиза безопасности в межрегиональных территориальных управлениях по надзору за ядерной и радиационной безопасностью

В 2015 г. межрегиональными территориальными управлениями по надзору за ядерной и радиационной безопасностью (далее — МТУ ЯРБ) в рамках предоставления Федеральной службой по экологическому, технологическому и атомному надзору государственной услуги по лицензированию в области использования атомной энергии рассматривались экспертные заключение ООО «Атомэксперт24» (г. Москва) и ООО «РЭСцентр» (г. Санкт-Петербург) проводили экспертизу безопасности по заданиям шести МТУ ЯРБ, ЗАО «Научный центр «Техэкспертиза» (г. Москва) — пяти МТУ ЯРБ, ООО «РусАтомЭкспертиза» (г. Москва) и ООО «Уралэксцентр» (г. Екатеринбург) — четырех МТУ ЯРБ, ООО «Эксперт-Атом» (г. Балаково) — трех МТУ ЯРБ.
Экспертиза безопасности в Волжском МТУ ЯРБ

В 2015 г. экспертизы безопасности проводили следующие экспертные организации, имеющие соответствующие лицензии Ростехнадзора:

ООО «РЭСцентр» (г. С.-Петербург); ООО «НЭЦЯТ» (г. Нижний Новгород); ЗАО «НЦ «Техэкспертиза» (г. Москва); ООО «Радиационно-Экологический контроль» (г. Оренбург); ФГУП ВО «Безопасность» (г. Москва); ООО «Донэнерго сервис» (г. Волгодонск); ООО «Эксперт-Атом» (Саратовская область, г. Балаково); ООО «Атомэксперт24» (г. Москва); ООО «Уралэксцентр» (г. Екатеринбург); ООО «РусАтомЭкспертиза» (г. Москва).

В 2015 г. было организовано проведение 172 экспертиз безопасности (из них 8 экспертиз по заявлениям на внесение изменений в УДЛ), которые по видам деятельности распределились следующим образом:

конструирование оборудования для атомных станций — 26;
проектирование и конструирование ядерной установки в части отдельных зданий и сооружений, иных систем ядерной установки (блока АС) — 2;
конструирование оборудования для ЯУ судов и иных плавсредств с ядерными реакторами, судов атомно-технологического обслуживания, содержащих ядерные материалы — 3;
конструирование оборудования для радиационных источников, радиоактивных веществ — 5;
конструирование оборудования объектов ядерного топливного цикла — 2;
конструирование оборудования для пунктов хранения — 1;
изготовление оборудования для атомных станций — 29;
изготовление оборудования для объектов ядерного топливного цикла — 3;
изготовление оборудования для ЯУ судов и иных плавсредств с ядерными реакторами, судов атомно-технологического обслуживания, содержащих ядерные материалы — 4;
изготовление оборудования для пунктов хранения — 1;
изготовление оборудования для АС и объектов ядерного топливного цикла — 1;
изготовление оборудования для АС и ЯУ судов и иных плавсредств с ядерными реакторами, судов атомно-технологического обслуживания, содержащих ядерные материалы — 1;
изготовление оборудования для радиационных источников, радиоактивных веществ — 4;
эксплуатация ядерной установки в части выполнения работ и предоставления услуг эксплуатирующей организации — 18;
сооружение ядерных установок сооружений и комплексов с исследовательскими ядерными реакторами — 3;
сооружение ядерных установок в части выполнения работ и предоставления услуг эксплуатирующей организации — 12;
сооружение радиационного источника: комплексов, в которых содержатся радиоактивные вещества, в части выполнения работ и предоставления услуг эксплуатирующей организации — 1;
эксплуатация радиационного источника — 37;
вывод из эксплуатации радиационного источника — 1;
сооружение пункта хранения — стационарного объекта и сооружения, расположенного вне территории ядерной установки или радиационного источника — 3;
сооружение стационарного объекта, предназначенного для хранения ядерных материалов в части выполнения работ и предоставления услуг эксплуатирующей организации — 4;
обращение с радиоактивными веществами при их транспортировании — 2;
эксплуатация ядерной установки — сооружения, комплекса, установки с ядерными материалами, предназначенной для производства, переработки, транспортирования ядерного топлива и ядерных материалов в части выполнения работ и предоставления услуг эксплуатирующей организации — 6;
эксплуатация ядерных установок: сооружений и комплексов с исследовательскими ядерными установками, в части выполнения работ и предоставления услуг эксплуатирующей организации — 2;
эксплуатация ядерных установок (атомных станций), радиационных источников, пунктов хранения ядерных материалов и радиоактивных веществ, хранилищ радиоактивных отходов в части выполнения работ и оказания услуг эксплуатирующим организациям, по монтажу, наладке, техническому обслуживанию, пусконаладочным работам, вводу в эксплуатацию и ремонту функциональных систем и комплексов инженерно-технических средств физической защиты в области использования атомной энергии — 1.
В 2015 г. Волжским МТУ ЯРБ по результатам проведенной экспертизы принято одно решение об отказе в выдаче лицензии.

Экспертиза безопасности в МТУ ЯРБ Сибири и Дальнего Востока

В 2015 г. экспертизы безопасности проводили следующие экспертные организации, имеющие соответствующие лицензии Ростехнадзора:

ООО «РЭСцентр» (г. Санкт-Петербург); ООО «Уралэксцентр» (г. Екатеринбург); ООО «Атомэксцентр24» (г. Москва); ООО «Эксперт-Атом» (г. Балаково); ООО «РАДЭК» (г. Оренбург); ФГБУ «33 ЦНИИИ» Минобороны России (г. Вольск); ЗАО «Научный центр «Техэкспертиза» (г. Москва); ООО «МАТЭК» (Калужская обл., г. Обнинск); АНО «УТЦ «Безопасность» (г. Новосибирск).

В 2015 г. было организовано проведение 95 экспертиз безопасности, которые по видам деятельности распределились следующим образом:

проектирование и конструирование ядерных установок, радиационных источников, пунктов хранения ядерных материалов и радиоактивных веществ, хранилищ радиоактивных отходов — 2;
конструирование и изготовление оборудования для ядерных установок, радиационных источников, пунктов хранения ядерных материалов и радиоактивных веществ, хранилищ радиоактивных отходов — 17;
сооружение, эксплуатация и вывод из эксплуатации ядерных установок, радиационных источников, пунктов хранения ядерных материалов и радиоактивных веществ, хранилищ радиоактивных отходов в части выполнения работ и предоставления услуг в области использования атомной энергии — 44;
эксплуатация стационарных радиационных источников — 19;
эксплуатация стационарных радиационных источников в части выполнения работ и предоставления услуг в области использования атомной энергии — 2;
обращение с радиоактивными веществами — 8;
обращение с радиоактивными отходами в части выполнения работ и предоставления услуг в области использования атомной энергии — 3.
Экспертиза безопасности в Донском МТУЯРБ

В 2015 г. экспертизы безопасности проводили следующие экспертные организации, имеющие соответствующие лицензии Ростехнадзора:

ООО «Инженерный центр «Эксперт»» (Ростовская обл., г. Волгодонск); ООО Предприятие по обеспечению работоспособности технологического оборудо-

вания «РЕСУРС» (г. Воронеж); ООО «Экспертно-консультационное предприятие «Энергоатом» (г. Воронеж); ООО «Эксперт-Atom» (Саратовская обл., г. Балако-

во); ООО «Межотраслевой экспертно-сертификационный, научно-технический и контрольный центр ядерной и радиационной безопасности (РЭСцентр)» (г. Санкт-

Петербург); ООО «Атомэксперт24» (г. Москва); ООО «РусАтомЭкспертиза» (г. Москва); ЗАО «Научный центр «Техэкспертиза» (г. Москва); АО «Всероссийское произ-

водственное объединение «ЗАРУБЕЖАТОМЭНЕРГООСТРОЙ» (АО «ВПО «ЗАЭС») (г. Москва).

В 2015 г. Донским МТУЯРБ было организовано проведение 130 экспертиз без-

опасности (из них 2 экспертизы по заявлениям на внесение изменений в УДЛ на со-

оружение ядерных установок (блоков атомных станций) в части выполнения работ и предоставления услуг для эксплуатирующей организации. По видам деятельнос-

ти экспертизы безопасности распределились следующим образом:

эксплуатация радиационных источников и пункта хранения радиоактивных ве-

ществ, а также обосновывающих деятельность по сооружению, эксплуатации и вы-

воду из эксплуатации ядерных установок, стационарного объекта, предназначенно-

го для хранения ядерных материалов и хранилищ радиоактивных отходов, в части выполни-

ния работ и предоставления услуг для эксплуатирующей организации — 67;

использование радиоактивных веществ при проведении научно-исследователь-

ских и опытно-конструкторских работ — 1;

обращение с радиоактивными веществами при их транспортировании — 2;

обращение с радиоактивными отходами при их транспортировании — 1;

обращение с радиоактивными отходами в части выполнения работ и предостав-

ления услуг для эксплуатирующей организации — 1;

проектирование ядерных установок, пунктов хранения в части выполнения ра-

бот и предоставления услуг для эксплуатирующей организации — 5;

конструирование и изготовление оборудования для ядерных установок и пунк-

тов хранения ядерных материалов и радиоактивных веществ, хранилищ радиоак-

тивных отходов — 24;

сооружение ядерных установок (блоков атомных станций) в части выполнения работ и предоставления услуг для эксплуатирующей организации — 21;

сооружение ядерных установок (сооружений, комплексов, установок с ядерными материа-

лами, предназначенными для производства, переработки, транспортирования ядерного топлива и ядерных материалов — 2;

сооружение радиационных источников (комплексы, в которых содержатся радио-

активные вещества (включая комплексы, расположенные на территории ядерной установки или радиационного источника и не предусмотренные в первоначальном проекте ядерной установки или радиационного источника)) — 2;

сооружение ядерных установок (сооружений и комплексов с исследовательски-

ми ядерными реакторами) в части выполнения работ и предоставления услуг эксплуатирующей организации — 1;
сооружение пунктов хранения (стационарных объектов и сооружений, предназначенных для хранения ядерных материалов, расположенных на территории ядерной установки и не предусмотренных в первоначальном проекте ядерной установки) в части выполнения работ и предоставления услуг эксплуатирующей организации — 1;
сооружение пунктов хранения (стационарных объектов и сооружений, предназначенных для захоронения радиоактивных отходов) в части выполнения работ и предоставления услуг эксплуатирующей организации — 1;
сооружение хранилищ радиоактивных отходов (стационарных объектов и сооружений, расположенных вне территории ядерной установки или радиационного источника, имеющих межрегиональное значение, предназначенных для хранения радиоактивных отходов) в части выполнения работ и предоставления услуг эксплуатирующей организации — 1.

В 2015 г. экспертных заключений с отрицательными выводами в Донское МТУ ЯРБ не поступало.

Экспертиза безопасности в Северо-Европейском МТУ ЯРБ

В 2015 г. экспертизы безопасности проводили следующие экспертные организации, имеющие соответствующие лицензии Ростехнадзора:

ООО «Инженерный центр «Р.А.Н.» (ООО «ИЦ «Р.А.Н.») (г. Санкт-Петербург); (ООО «РЭСцентр») (г. Санкт-Петербург); ФБУ «НТЦ ЯРБ» (г. Москва); ООО «ЦНИТЭ» (г. Санкт-Петербург); ООО «СМНУ «КВАРС» (г. Санкт-Петербург); ФГБУ «33 ЦНИИ МО РФ» (Саратовская область, г. Вольск-18); ООО «Атомэксперт24» (г. Москва); ООО «РусАтомЭкспертиза» (г. Москва); ООО «Уралрэцэнтр» (Свердловская обл., г. Екатеринбург).

В 2015 г. Северо-Европейским МТУ ЯРБ было организовано проведение 175 экспертиз безопасности, которые по видам деятельности распределились следующим образом:
сооружение ЯУ в части выполнения работ и предоставления услуг эксплуатирующим организациям на АЭС — 21;
эксплуатация ЯУ в части выполнения работ и предоставления услуг эксплуатирующим организациям на АЭС — 29;
обращение с ЯМ на АЭС — 1;
обращение с РАО на АЭС — 1;
сооружение ЯУ в части выполнения работ и предоставления услуг эксплуатирующим организациям на ИЯР — 2;
эксплуатация ЯУ в части выполнения работ и оказания услуг эксплуатирующим организациям на предприятиях ЯТЦ — 5;
сооружение ЯУ в части выполнения работ и оказания услуг эксплуатирующим организациям на предприятиях ЯТЦ — 1;
сооружение ПХ ЯМ, ПХ РВ, хранилищ РАО в части выполнения работ и оказания услуг эксплуатирующим организациям — 2;
обращение с РАО при хранении, переработке, транспортировании и захоронении, в части выполнения работ и оказания услуг эксплуатирующим организациям — 1;
сооружение ЯУ судов и иных плавсредств в части выполнения работ и оказания услуг эксплуатирующим организациям — 2;
вывод из эксплуатации РИ (судна, переведенного в категорию РИ) — 2;
эксплуатация ПХ РВ, хранилищ РАО — 1;
сооружение РИ — 6;
эксплуатация РИ — 23;
обращении с РВ при транспортировании и хранении — 1;
обращении с РАО — 2;
вывод из эксплуатации РИ — 1;
вывод из эксплуатации ПХ — 1;
проектирование ОИАЭ, конструирование и изготовление оборудования для объ-
ектов использования атомной энергии — всего 73, в их числе:
проектирование ОИАЭ — 10;
конструирование оборудования для ОИАЭ — 30;
изготовление оборудования для ОИАЭ — 33.
В 2015 г. Северо-Европейским МТУ ЯРБ направлялись на доработку в эксперт-
ные организации 9 экспертных заключений, выполненных ООО «Атомэксперт24», ООО «РусАтомЭкспертиза», ООО «РЭСцентр», ООО «Уралрэсцентр», ООО «ИЦ «Р.А.Н.», так как экспертные заключения не отвечали техническому заданию, име-
ли ошибки и недоработки:
ООО «Атомэксперт24» — 2 экспертных заключения;
ООО «РусАтомЭкспертиза» — 1 экспертное заключение;
ООО «РЭСцентр» — 3 экспертных заключения;
ООО «ИЦ «Р.А.Н.» — 2 экспертных заключения;
ООО «Уралрэсцентр» — 1 экспертное заключение.
Основными ошибками и недоработками экспертных заключений были следую-
ющие:
отсутствие описания выполняемых технологических процессов, в том числе по
контролю, технической оснащенности;
ссылка на отмененные и не распространяющиеся на заявленную деятельность
нормативные документы;
недостаточный анализ и аргументированность выводов по соблюдению соиска-
телем лицензии требований нормативных документов, распространяющихся на за-
явленную деятельность;
опечатки в цифровых обозначениях нормативных документов.
По результатам проведенных экспертиз оформлено 2 решения об отказе в выда-
че лицензий.
В 2015 г. отделами Северо-Европейского МТУ ЯРБ была организована 31 экспер-
тиза документов, обосновывающих внесение изменений в УДЛ, в том числе:
на эксплуатацию радиационных источников — 9;
на право конструирования и изготовления оборудования для ОИАЭ — 15;
на сооружение ЯУ атомных станций — 6,
на размещение ЯУ атомных станций — 1.
Экспертиза безопасности в Уральском МТУ ЯРБ
В 2015 г. экспертизы безопасности проводили следующие экспертные организа-
ции, имеющие соответствующие лицензии Ростехнадзора:
АНО «Экспертиза» выполнило 3 экспертизы; ООО «Экспертиза» выполнило
118 экспертиз; ООО «Уралрэсцентр» выполнило 4 экспертизы; ООО «РИП» выпол-
нило 10 экспертиз; ООО «Атомэксперт24» выполнило одну экспертизу; ООО «РЭС-
центр» выполнило 4 экспертизы; АО «НПО «ЦНИИТМАШ» выполнило одну экс-
пертизу; АО «НЦ «Техэкспертиза» выполнило 7 экспертиз.
© Оформление. ЗАО НТЦ ПБ, 2016
В 2015 г. Уральским МТУ ЯРБ было организовано проведение 148 экспертиз без-опасности, которые по видам деятельности распределились следующим образом:
оказание услуг на атомных станциях — 58;
оказание услуг на предприятиях топливного цикла — 18;
эксплуатация и использование радиационно опасных объектов — 26;
конструирование оборудования для ОИАЭ — 25;
изготовление оборудования для ОИАЭ — 20;
проектирование объектов использования атомной энергии — 1.
В 2015 г. Уральское МТУ ЯРБ не выдавало лицензий на право проведения экспертизы безопасности.

Экспертиза безопасности в Центральном МТУ ЯРБ
В 2015 г. экспертизы безопасности проводили следующие экспертные организации, имеющие соответствующие лицензии Ростехнадзора:
В 2015 г. Центральным МТУ ЯРБ было организовано проведение 446 экспертиз безопасности, которые по видам деятельности распределились следующим образом:
размещение в части выполнения работ и оказания услуг эксплуатирующим организациям — 2;
сооружение в части выполнения работ и оказания услуг эксплуатирующим организациям — 86;
эксплуатация в части выполнения работ и оказания услуг эксплуатирующим организациям — 138;
вывод из эксплуатации в части выполнения работ и оказания услуг эксплуатирующим организациям — 12;
обращение с ядерными материалами в части выполнения работ и оказания услуг эксплуатирующим организациям — 2;
обращение с радиоактивными веществами — 8;
обращение с радиоактивными отходами — 2;
использование радиоактивных веществ при проведении НИР и ОКР — 9;
проектирование и конструирование ОИАЭ в части выполнения работ и оказания услуг эксплуатирующим организациям — 35;
конструирование оборудования для ОИАЭ — 67;
изготовление оборудования для ОИАЭ — 85.
В Центральное МТУ ЯРБ в 2015 г. поступили 17 экспертных заключений с отрицательными выводами.
Экспертиза безопасности в федеральном бюджетном учреждении «Научно-технический центр по ядерной и радиационной безопасности» (ФБУ «НТЦ ЯРБ»)

В рамках процедуры лицензирования деятельности в области использования атомной энергии, осуществляемой Ростехнадзором, в 2015 г. по поручениям Ростехнадзора и в соответствии с заданиями на проведение экспертизы в ФБУ «НТЦ ЯРБ» разработано 316 экспертных заключений. Из них 259 экспертных заключений — по заданиям Управления по регулированию безопасности атомных станций и исследовательских ядерных установок центрального аппарата Ростехнадзора. 227 экспертных заключений принято в 2015 г., 48 экспертных заключений по заданиям Управления по регулированию безопасности объектов ядерного топливного цикла, ядерных энергетических установок судов и радиационно опасных объектов центрального аппарата Ростехнадзора. 37 экспертных заключений принято в 2015 г., 6 экспертных заключений по заданиям Центрального МТУ ЯРБ и 2 экспертных заключения по заданиям Северо-Европейского МТУ ЯРБ.

По объектам использования атомной энергии и связанных с ними видам деятельности экспертизы безопасности распределились следующим образом:

ядерные установки АЭС — 255;
ядерные установки топливного цикла — 3;
исследовательские ядерные установки, ядерные установки судов — 6;
пункты хранения ЯМ и РВ, РАО — 22;
ордершение с ЯМ и РВ при транспортировании и хранении — 6;
вывод из эксплуатации ОИАЭ — 4;
проведение научных исследований и выполнение иных видов деятельности в области использования атомной энергии — 20.

Проблемы экспертизы безопасности и пути их решения

Основной проблемой, связанной с обеспечением требуемого уровня экспертизы безопасности, проводимой в экспертных организациях научно-технической поддержки Ростехнадзора, остается дефицит числа квалифицированных технических специалистов с учетом выросшего в последние годы объема работ.

Указанная проблема обусловлена объективным обстоятельством, а именно: ограниченным количеством высококвалифицированных специалистов среднего возраста в атомной отрасли, которые, профессионально владея специальными знаниями и не являясь разработчиками подлежащих экспертизе обоснований безопасности, могли бы принимать участие в проведении экспертизы безопасности в рамках процедуры лицензирования.

Кроме того, высокая занятость высококвалифицированных специалистов, работающих в ведущих организациях атомной отрасли, не задействованных в разработке подлежащих экспертизе обоснований безопасности, ограничивает возможность их участия в экспертизах безопасности.

На основе опыта ФБУ «НТЦ ЯРБ» по проведению экспертиз безопасности хотелось бы также отметить, что в процессе проведения экспертиз выстроилась прозрачная система взаимодействия экспертов со специалистами заявителей. В рамках такого взаимодействия проводится открытое всестороннее обсуждение вопросов, возникших у экспертов к обоснованиям безопасности, а также к свидетельствам о фактическом состоянии того или иного объекта использования атомной энергии.
Однако зачастую материалы, обосновывающие безопасность, характеризуются недостаточным уровнем качества.

По-прежнему актуальной остается задача сохранения и передачи знаний от старшего поколения специалистов, уходящего на пенсию по возрасту, поколению молодых специалистов с целью профессиональной подготовки и вовлечения последних в экспертную деятельность.

Об оценке применимости программных средств

В соответствии с рекомендациями п. 3.58 руководства МАГАТЭ GS-G-1.2 «Рассмотрения и оценки, проводимые регулирующим органом для ядерных установок» органам государственного регулирования безопасности при использовании атомной энергии необходимо проводить оценку применимости программных средств (ПС), используемых при расчетном обосновании безопасности объектов использования атомной энергии (ОИАЭ). Указанные рекомендации МАГАТЭ нашли отражение в требованиях российских федеральных норм и правил в области использования атомной энергии, в соответствии с которыми при расчетном обосновании безопасности ОИАЭ должны применяться верифицированные и аттестованные ПС.

Оценка применимости (и последующая аттестация) программных средств, применяемых при обосновании безопасности, осуществляется действующим при Роснадзоре экспертным Советом по аттестации ПС по следующим тематическим направлениям: нейтронно-физические расчеты, тепло-гидравлические расчеты, расчеты прочности оборудования, расчеты радиационной безопасности, расчеты прочности строительных конструкций, расчеты физико-химических процессов. Применимость ПС оценивается на основе анализа ПС и материалов его верификации, проведенной разработчиками ПС. В деятельности по оценке применимости ПС принимают участие высококвалифицированные специалисты от более чем 30 научно-технических организаций (включая предприятия и организации атомной отрасли, ведущие высшие учебные заведения, институты Российской академии наук), которые представлены в Совете по аттестации ПС.

Результаты оценки применимости соответствующего программного средства отражаются в аттестационном паспорте, содержащем сведения о назначении, области применения программного средства и погрешности расчета, обеспечиваемой программным средством и подтвержденной при его верификации. Информация о ПС, приводимая в аттестационных паспортах, учитывается при экспертизе безопасности ОИАЭ, проводимой в рамках процедуры лицензирования.

2.3.2. Экспертиза промышленной безопасности

В соответствии с Федеральным законом от 21 июля 1997 г. № 116-ФЗ «О промышленной безопасности опасных производственных объектов» (далее — Федеральный закон № 116-ФЗ) проведение экспертизы промышленной безопасности относится к видам деятельности в области промышленной безопасности.
Экспертиза промышленной безопасности — определение соответствия объектов экспертизы промышленной безопасности предъявляемым к ним требованиям промышленной безопасности.

Разработка экспертизы промышленной безопасности регламентируется Федеральным законом № 116-ФЗ, Федеральными нормами и правилами в области промышленной безопасности «Правила проведения экспертизы промышленной безопасности», утвержденными приказом Ростехнадзора от 14 ноября 2013 № 538.

В соответствии с Федеральным законом № 116-ФЗ экспертизе промышленной безопасности подлежат:

документация на консервацию, ликвидацию опасного производственного объекта;

dокументация на техническое перевооружение опасного производственного объекта в случае, если указанная документация не входит в состав проектной документации такого объекта, подлежащей экспертизе в соответствии с законодательством о градостроительной деятельности;

technические устройства, применяемые на опасном производственном объекте, в случаях, установленных статьей 7 Федерального закона № 116-ФЗ;

edения и сооружения на опасном производственном объекте, предназначенные для осуществления технологических процессов, хранения сырья или продукции, перемещения людей и грузов, локализации и ликвидации последствий аварий;

dекларация промышленной безопасности, разрабатываемая в составе документации на техническое перевооружение (в случае, если указанная документация не входит в состав проектной документации опасного производственного объекта, подлежащей экспертизе в соответствии с законодательством о градостроительной деятельности), консервацию, ликвидацию опасного производственного объекта, или вновь разрабатываемая декларация промышленной безопасности;

обоснование безопасности опасного производственного объекта, а также изменения, вносимые в обоснование безопасности опасного производственного объекта.

Экспертиза промышленной безопасности проводится в порядке, установленном федеральными нормами и правилами в области промышленной безопасности, на основании принципов независимости, объективности, всесторонности и полноты исследований, проводимых с использованием современных достижений науки и техники.

Государственная услуга по ведению реестра заключений экспертизы промышленной безопасности (далее — Реестр) предоставляется путем внесения в Реестр данных о проведенной экспертизе, подготовленных по результатам проведения экспертизы промышленной безопасности опасных производственных объектов, перечень которых установлен статьей 13 Федерального закона № 116-ФЗ и осуществляет территориальные органы Ростехнадзора по месту нахождения опасного производственного объекта в соответствии с Административным регламентом Федеральной службы по экологическому, технологическому и атомному надзору по предоставлению государственной услуги по ведению реестра заключений экспертизы промышленной безопасности, утвержденного приказом Ростехнадзора от 23 июня 2014 г. № 260.

В 2015 г. в Реестр внесено 373 503 заключения экспертизы промышленной безопасности (табл. 121).
Сведения о зарегистрированных в 2015 г. заключениях экспертизы промышленной безопасности

<table>
<thead>
<tr>
<th>№ п/п</th>
<th>Наименование</th>
<th>2015 г.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Всего зарегистрировано заключений экспертизы, из них:</td>
<td>373 503</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>деклараций промышленной безопасности опасного производственного объекта</td>
<td>794</td>
</tr>
<tr>
<td>2</td>
<td>зданий и сооружений на опасном производственном объекте</td>
<td>29 524</td>
</tr>
<tr>
<td>3</td>
<td>документации на консервацию опасного производственного объекта</td>
<td>1400</td>
</tr>
<tr>
<td>4</td>
<td>документации на ликвидацию опасного производственного объекта</td>
<td>1052</td>
</tr>
<tr>
<td>5</td>
<td>документации на техническое перевооружение опасного производственного объекта в случае, если указанная документация не входит в состав проектной документации такого объекта, подлежащей экспертизе в соответствии с законодательством о градостроительной деятельности</td>
<td>21 057</td>
</tr>
<tr>
<td>6</td>
<td>обоснований безопасности опасного производственного объекта</td>
<td>140</td>
</tr>
<tr>
<td>7</td>
<td>технических устройств, применяемых на опасном производственном объекте</td>
<td>319 536</td>
</tr>
</tbody>
</table>

Основной объем из внесенных в Реестр заключений экспертизы промышленной безопасности приходится на технические устройства, применяемые на опасном производственном объекте.

Наибольшее количество экспертиз промышленной безопасности технических устройств, применяемых на опасных производственных объектах, приходится на подъемные сооружения. Значительное количество работ по проведению экспертизы промышленной безопасности приходится на нефтегазовую промышленность, объекты газопотребления и газораспределения, нефтехимическую и нефтеперерабатывающую промышленность, объекты котлонадзора, химический комплекс.

2.4. Регистрация объектов в государственном реестре опасных производственных объектов

Отнесение предприятий или их цехов, участков, площадок, а также иных объектов, на которых получаются, используются, перерабатываются, образуются, хранятся, транспортируются, уничтожаются опасные вещества, к категории опасных (или неопасных) производственных объектов производится согласно статье 2 Федерального закона от 21 июля 1997 г. № 116-ФЗ «О промышленной безопасности опасных производственных объектов», в редакции Федерального закона от 4 марта 2013 г. № 22-ФЗ «О внесении изменений в Федеральный закон «О промышленной безопасности опасных производственных объектов», отдельные законодательные акты Российской Федерации и о признании утратившим силу подпункта 114 пункта 1 статьи 333.33 части второй Налогового кодекса Российской Федерации», и Приложению 1 к нему. Также в соответствии с Приложением 2 (таблица 1 и таблица 2) устанавливаются классы опасности опасных производственных объектов:

I класс — объекты чрезвычайно высокой опасности;
II класс — объекты высокой опасности;
III класс — объекты средней опасности;
IV класс — объекты низкой опасности.
В зависимости от типов опасных производственных объектов для их классификации применяются различные количественные характеристики, такие, как: масса используемых в различных процессах опасных веществ; давление в трубопроводных системах; объемы разработки горной массы; использование оборудования, рассчитанного на определенную массу расплава металла. Качественные характеристики определяют виды работ или производств, например, опасные производственные объекты бурения и добычи нефти, газа и газового конденсата, элеваторы, опасные производственные объекты объектов мукомольного, крупяного и комбикормового производств, сети газораспределения и газопотребления. При классификации объектов, на которых используется оборудование, работающее под избыточным давлением, также учитывается социальная значимость последствий аварий с этим оборудованием.

Исполнение государственной услуги по регистрации опасных производственных объектов в государственном реестре опасных производственных объектов и ведению государственного реестра опасных производственных объектов осуществляется на основании и в соответствии с Федеральным законом от 21 июля 1997 г. № 116-ФЗ «О промышленной безопасности опасных производственных объектов»; Правилами регистрации объектов в государственном реестре опасных производственных объектов, утвержденными постановлением Правительства Российской Федерации от 24 ноября 1998 г. № 1371, в порядке, установленном Административным регламентом Федеральной службы по экологическому, технологическому и атомному надзору по исполнению государственной функции по регистрации опасных производственных объектов и ведению государственного реестра опасных производственных объектов, утвержденным приказом Федеральной службы по экологическому, технологическому и атомному надзору от 4 сентября 2007 г. № 606.

Наименование опасного производственного объекта эксплуатирующая организация — заявитель устанавливает с учетом Требований к ведению государственного реестра опасных производственных объектов в части присвоения наименований опасным производственным объектам для целей регистрации в государственном реестре опасных производственных объектов, утвержденных приказом Ростехнадзора от 7 апреля 2011 г. № 168, на основании идентификации объекта, которую осуществляет самостоятельно, с полной мерой ответственности за достоверность результатов ее проведения.

В составе государственного реестра опасных производственных объектов осуществляется ведение ведомственных и территориальных разделов.

Ведение всех разделов государственного реестра опасных производственных объектов осуществляется на основе единых нормативно-методических и программных принципов.

По итогам 2015 г. можно отметить, что территориальными органами Ростехнадзора проведена перерегистрация 97,17 % от общего количества опасных производственных объектов, зарегистрированных в государственном реестре по состоянию на 15 марта 2013 г. (285 750 объектов).

По данным, содержащимся в Комплексной системе информатизации Ростехнадзора на 1 января 2016 г., в государственном реестре опасных производственных объектов содержится информация о 174 801 ОПО, из них 169 856 объектов прошли перерегистрацию с присвоением класса опасности. Исключено 155 811 объектов, что составляет 54,52 % от количества ОПО, находившихся в государственном реестре по состоянию на 15 марта 2013 г.
Из общего количества зарегистрированных опасных производственных объектов по состоянию на 1 января 2016 г. преобладающее большинство составляют объекты средней опасности (III класс — 51,17 %, более 89 тыс. объектов), опасные производственные объекты низкой опасности (IV класс — 40,58 %, более 70 тыс. объектов), опасные производственные объекты высокой опасности (II класс) — 4,23 %, 7,4 тыс. объектов), опасные производственные объекты чрезвычайно высокой опасности (I класс) — 1,16 %, более 2 тыс. объектов) (рис. 84).

Рис. 84. Распределение зарегистрированных ОПО по классу опасности

2.5. Декларирование промышленной безопасности

Декларация промышленной безопасности опасного производственного объекта (ОПО) — документ, в котором представлены результаты всесторонней оценки риска аварии, анализа достоверности принятых мер по предупреждению аварий и по обеспечению готовности организаций к эксплуатации ОПО в соответствии с требованиями норм и правил промышленной безопасности, а также к локализации и ликвидации последствий аварии на ОПО.

Федеральным законом от 21 июля 1997 г. № 116-ФЗ «О промышленной безопасности опасных производственных объектов» (далее — Федеральный закон № 116-ФЗ) устанавливается обязательность разработки деклараций промышленной безопасности ОПО I и II классов опасности, на которых получаются, используются, перерабатываются, образуются, хранятся, транспортируются, уничтожаются опасные вещества в количествах, указанных в приложении 2 к настоящему Федеральному закону (за исключением использования взрывчатых веществ при проведении взрывных работ).

Разработка декларации промышленной безопасности регламентируется Федеральным законом № 116-ФЗ, «Порядком оформления декларации промышленной безопасности опасных производственных объектов и перечня включаемых в нее сведений», утвержденным приказом Ростехнадзора от 29 ноября 2005 г. № 893 «Об утверждении Порядка оформления декларации промышленной безопасности опасных производственных объектов и перечня включаемых в нее сведений».

На основании пункта 3.1 статьи 14 Федерального закона № 116-ФЗ декларация промышленной безопасности находящегося в эксплуатации опасного производственного объекта разрабатывается вновь:
в случае истечения десяти лет со дня внесения в реестр деклараций промышленной безопасности последней декларации промышленной безопасности;
в случае изменения технологических процессов на опасном производственном объекте либо увеличения более чем на двадцать процентов количества опасных веществ, которые находятся или могут находиться на опасном производственном объекте;
в случае изменения требований промышленной безопасности;
по предписанию федерального органа исполнительной власти в области промышленной безопасности или его территориального органа в случае выявления несоответствия сведений, содержащихся в декларации промышленной безопасности, сведениям, полученным в ходе осуществления федерального государственного надзора в области промышленной безопасности.

Предоставление Ростехнадзором государственной услуги по ведению реестра деклараций промышленной безопасности (далее — Реестр) осуществляется в соответствии с Административным регламентом Федеральной службы по экологическому, технологическому и атомному надзору по предоставлению государственной услуги по ведению реестра деклараций промышленной безопасности, утвержденным приказом Ростехнадзора от 23 июня 2014 г. № 257.

Всего Ростехнадзором в 2015 г. внесено в Реестр 716 деклараций промышленной безопасности (рис. 85, табл. 122).

Таблица 122

Распределение внесенных в Реестр в 2015 г. деклараций по отраслям промышленности

<table>
<thead>
<tr>
<th>Отрасль</th>
<th>Количество</th>
</tr>
</thead>
<tbody>
<tr>
<td>Нефтехимическая и нефтеперерабатывающая промышленность</td>
<td>79</td>
</tr>
<tr>
<td>Нефтегазодобывающая промышленность</td>
<td>341</td>
</tr>
<tr>
<td>Магистральный нефтепроводной транспорт</td>
<td>66</td>
</tr>
<tr>
<td>Газораспределение и газопотребление</td>
<td>26</td>
</tr>
<tr>
<td>Металлургическая промышленность</td>
<td>13</td>
</tr>
<tr>
<td>Объекты хранения взрывчатых материалов</td>
<td>31</td>
</tr>
<tr>
<td>Химический комплекс</td>
<td>153</td>
</tr>
<tr>
<td>Горная промышленность</td>
<td>7</td>
</tr>
</tbody>
</table>

Рис. 86. Распределение зарегистрированных в 2015 г. деклараций по отраслям промышленности

Наибольшее количество деклараций промышленной безопасности разработано на объекты нефтегазодобычи.

2.6. Научно-техническая поддержка регулирующей деятельности

2.6.1. Научно-исследовательские работы в области ядерной и радиационной безопасности

В 2015 г. научная поддержка регулирующей деятельности Федеральной службы по экологическому, технологическому и атомному надзору осуществлялась ФБУ «НТЦ ЯРБ» в рамках:

- государственного задания за счет средств федерального бюджета;
- федеральной целевой программы «Обеспечение ядерной и радиационной безопасности на 2008 год и на период до 2015 года»;
- договоров с организациями атомной отрасли.

2.6.1.1. Государственное задание ФБУ «НТЦ ЯРБ»

В 2015 г. в рамках государственного задания ФБУ «НТЦ ЯРБ» выполнялись работы по четырем разделам, предусмотренным «Ведомственным перечнем государственных услуг (работ), оказываемых (выполняемых) находящимися в ведении Ростехнадзора федеральными государственными учреждениями в качестве основных видов деятельности».

В рамках выполнения 25 тем НИР подготовлено 89 отчетов, содержащих результаты научно-исследовательских работ, проекты федеральных норм и правил (далее — ФНП) и руководств по безопасности (далее — РБ).
Все работы были направлены на научно-техническую поддержку регулирующей деятельности Ростехнадзора в области использования атомной энергии.

Проведение прикладных научных исследований

В рамках данного раздела выполнен комплекс НИР, в результате которых:

разработаны предложения по совершенствованию федеральных норм и правил, регламентирующих требования к содержанию плана мероприятий по защите персонала в случае аварии на исследовательских ядерных установках на основе результатов действующих документов и рекомендаций МАГАТЭ;

разработаны предложения по совершенствованию федеральных норм и правил, устанавливающих требования к проектированию, конструированию, изготовлению, испытаниям и оценке соответствия тепловыделяющих сборок, а именно разработаны предложения по внесению изменений и дополнений в федеральные нормы и правила: Требования к содержанию отчета по обоснованию безопасности АС с реактором типа ВВЭР (НП 006–98), Требования к содержанию отчета по обоснованию безопасности атомных станций с реакторами на быстрых нейтронах (НП 018–05), Правила оценки соответствия оборудования, комплектующих, материалов и полупроизводств, поставляемых на объекты использования атомной энергии (НП 071–06), а также разработана первая редакция проекта федеральных норм и правил «Основные требования к тепловыделяющим сборкам для атомных станций».

Подготовлены предложения по совершенствованию действующих нормативных документов на основе анализа и систематизации поступивших предложений и замечаний, а также результатов оценки безопасности объектов использования атомной энергии.

Подготовка проектов нормативных правовых и правовых актов в установленной сфере деятельности

В рамках данного раздела выполнен комплекс НИР, в результате которых доработаны окончательные редакции проектов ФНП с учетом поступивших замечаний для опубликования:

«Правила ядерной безопасности ядерных энергетических установок судов (взамен» НП-029–2001);

«Правила обеспечения безопасности при выводе из эксплуатации промышленных реакторов (взамен» НП-007–98).

Подготовлено к утверждению руководство по безопасности (РБ-106–15) «Рекомендуемые методы расчета параметров, необходимых для разработки и установления нормативов предельно допустимых выбросов радиоактивных веществ в атмосферный воздух» (утверждено приказом Ростехнадзора от 11 ноября 2015 г. № 458).

Доработана окончательная редакция проекта РБ с учетом поступивших замечаний для представления на утверждение «Основные рекомендации к разработке вероятностного анализа безопасности уровня 1 для блока атомной станции при исходных событиях, обусловленных сейсмическими воздействиями».

Разработана окончательная редакция проекта изменений в федеральные нормы и правила «Правила устройства и безопасной эксплуатации грузоподъемных кранов для объектов использования атомной энергии» (НП-043–11).

Разработана вторая редакция проекта ФНП «Общие положения обеспечения безопасности судов атомно-технологического обслуживания».

© Оформление. ЗАО НТЦ ПБ, 2016
Разработаны окончательные редакции проектов РБ:
«Рекомендации по обеспечению безопасности при обращении с радиоактивными отходами на судах и других плавсредствах с ядерными реакторами и судах атомно-технологического обслуживания» (взамен РБ-010–00);
«Рекомендации к разработке вероятностного анализа безопасности для хранилищ отработавшего ядерного топлива»;
«Методика оценки уровня культуры безопасности на предприятиях ядерного топливного цикла» (взамен РБ-047–08)».

Разработано методическое пособие по вопросам регулирования выбросов и сбросов в окружающую среду, содержащее описание целей и задач регулирования радиоактивных выбросов и сбросов в окружающую среду, положения законодательства Российской Федерации и нормативных правовых актов, относящихся к вопросам регулирования радиоактивных выбросов и сбросов, описание методов нормирования радиоактивных выбросов и сбросов.

Информационно-аналитическое обеспечение деятельности Ростехнадзора в установленной сфере деятельности, в том числе сбор, хранение, обработка и анализ информации

В рамках данного раздела выполнен комплекс НИР, в результате которых:
1. Актуализированы полнотекстовые базы данных по нормативным правовым актам и нормативным документам в области ядерной и радиационной безопасности и полнотекстовая база данных по документам МАГАТЭ за 2015 год, выполнена организация доступа к информационным ресурсам специалистов центрального аппарата Ростехнадзора, его межрегиональных территориальных управлений по надзору за ядерной и радиационной безопасностью. Обеспечен доступ специалистов атомной отрасли к этим базам данных через корпоративный портал и сайт ФБУ "НТЦ ЯРБ".
2. Разработана расчетная модель экспресс-оценки процессов в реакторной установке блоков АЭС с РУ ВВЭР-1000 (для переходных процессов с течами первого контура) для целей поддержки информационно-аналитического центра Ростехнадзора. Разработанные быстroredействующие модели оценки состояния критических функций безопасности и прогноза развития аварийных процессов в РУ на энергоблоках АЭС с реактором ВВЭР-1000 с течами из первого контура верифицированы в соответствии с документами по обоснованию безопасности для режимов с течами из первого контура.
3. Разработана расчетная модель экспресс-оценки в реакторной установке блоков АЭС с РУ типа ВВЭР-440 (для переходных процессов, не связанных с течами первого контура) для целей поддержки информационно-аналитического центра Ростехнадзора. Для обеспечения деятельности ИАЦ Ростехнадзора в условиях аварийного регулирования при нарушениях в работе ОИАЭ на базе ПС "РАДУГА-ЭУ" разработана модель экспресс-оценки в реакторной установке блоков АЭС с РУ типа ВВЭР-440 для переходных процессов, не связанных с течами первого контура.
4. Выполнен анализ безопасности эксплуатации энергоблоков № 1, 2 Смоленской АЭС после внедрения комплексной системы контроля и управления защитой (КСКУЗ) с предложениями по принятию регулирующих действий Ростехнадзора. Показана необходимость усиления контроля оперативного запаса реактивности, значений подкритичности и радиального коэффициента неравномерности в подкритическом состоянии реактора.
4. Выполнен анализ безопасности эксплуатации энергоблоков № 2 Ленинградской АЭС после восстановления ресурсных характеристик графитовой кладки с предложениями по принятию регулирующих действий Ростехнадзора. Результаты измерений и расчетов свидетельствуют о безопасности дальнейшей эксплуатации энергоблока № 2 Ленинградской АЭС на номинальном уровне мощности и подтверждают корректность выбора эксплуатирующей организацией стратегии ремонтных работ на энергоблоках РБМК-1000.

5. Выполнен анализ обоснования безопасности эксплуатации зданий и сооружений атомных электрических станций и хранилищ отработанного ядерного топлива по результатам мониторинговых гидрогеологических наблюдений с предложениями по принятию регулирующих действий Ростехнадзора. Разработаны рекомендации по совершенствованию обоснования безопасности эксплуатации зданий и сооружений атомных электрических станций и хранилищ отработанного ядерного топлива по результатам мониторинговых гидрогеологических наблюдений с предложениями по принятию регулирующих действий Ростехнадзора.

Обеспечение мероприятий по расследованию причин аварий, нарушений, инцидентов и чрезвычайных ситуаций техногенного характера и ликвидации их последствий

В рамках данного раздела выполнен комплекс НИР, в результате которых продолжены работы по анализу нарушений в работе объектов использования атомной энергии при их эксплуатации, а также годовых отчетов по безопасности эксплуатирующих организаций объектов использования атомной энергии. Выполнены анализы нарушений в работе атомных станций, радиационных источников, исследовательских ядерных установках, объектов ядерного топливного цикла и ядерных энергетических установках судов и иных плавсредств, а также в системах учета и контроля и физической защиты ядерных материалов и радиоактивных веществ на объектах использования атомной энергии.

Выполненные работы позволили выявить тенденции в динамике нарушений при эксплуатации объектов использования атомной энергии, выявить дефекты безопасности, проводить оценку состояния ядерной и радиационной безопасности объектов использования атомной энергии, а также оценить необходимость разработки и корректировки нормативной документации. Показаны проблемы безопасности объектов использования атомной энергии, которые предстоит решать эксплуатирующим организациям в целях повышения безопасности.

Выполнен обобщенный анализ информации об отклонениях и отказах, представляющих опасность для целостности оборудования и трубопроводов, за 2015 г. с предложениями по принятию регулирующих действий Ростехнадзора. Выполнен анализ корректирующих мероприятий эксплуатирующей организации по выявлению и устранению причин отказов.

2.6.1.2. Деятельность ФБУ «НТЦ ЯРБ» в рамках федеральной целевой программы «Обеспечение ядерной и радиационной безопасности на 2008 год и на период до 2015 года»

Основной целью федеральной целевой программы «Обеспечение ядерной и радиационной безопасности на 2008 год и на период до 2015 года» (далее — ФЦП ЯРБ) является комплексное решение проблемы обеспечения ядерной и радиационной безопасности Российской Федерации.
В 2015 г. ФБУ «НТЦ ЯРБ» выполнялись работы по всем 14 мероприятиям ФЦП ЯРБ, государственным заказчиком которых являлся Ростехнадзор.

В рамках 14 государственных контрактов были выполнены 45 тем НИР и подготовлены 85 отчетов, содержащих научно-техническую продукцию в виде различных редакций нормативных документов (ФНП и РБ) и отчетов о научно-исследовательских работах.

Основной целью выполняемых работ является получение результатов, способствующих эффективному выполнению задач, стоящих перед Ростехнадзором при реализации мероприятий ФЦП ЯРБ, государственным заказчиком которых она определена постановлением Правительства Российской Федерации от 13 июля 2007 г. № 444. Выполняемые работы были направлены на комплексное решение проблемы научного обеспечения регулирования ядерной и радиационной безопасности.

Основные результаты выполненных работ

Мероприятие 45. Научное и информационно-аналитическое обеспечение в области безопасного обращения с отработавшим ядерным топливом и радиоактивными отходами.

В рамках данного мероприятия выполнен комплекс НИР, в результате которых доработаны окончательные редакции проектов руководств по безопасности для представления на утверждение:

«Обеспечение безопасности при закрытии пунктов приповерхностного захоронения радиоактивных отходов»;
«Оценка безопасности при обращении с радиоактивными отходами перед захоронением».

Разработаны окончательные редакции проектов ФНП:

«Требования к составу и содержанию отчета по обоснованию безопасности пунктов приповерхностного захоронения РАО»;
«Требования к составу и содержанию отчета по обоснованию безопасности пунктов хранения РАО»;
«Правила обеспечения безопасности при выводе из эксплуатации ядерных установок ядерного топливного цикла».

Мероприятие 243. Научное и информационно-аналитическое обеспечение решения накопленных проблем в области ядерной и радиационной безопасности.

В рамках данного мероприятия выполнен комплекс НИР, в результате которых:

утверждено руководство по безопасности «Содержание годового отчета эксплуатирующей организации по оценке состояния ядерной и радиационной безопасности исследовательских ядерных установок» (приказ Ростехнадзора от 22 октября 2015 г. № 421).

Разработаны окончательные редакции проектов РБ:

«Рекомендации по проведению заключительного обследования выводимого из эксплуатации объекта использования атомной энергии»;
«Рекомендации по разработке программ обеспечения качества при выводе из эксплуатации объектов использования атомной энергии».

Доработаны окончательные редакции проектов ФНП для опубликования:

«Правила обеспечения безопасности при выводе из эксплуатации исследовательских ядерных установок» (взамен НП-028—01);
«Правила обеспечения безопасности при выводе из эксплуатации блока АС» (взамен НП-012—99).
Выполнен анализ методик измерения подкритичности реакторов РБМК и результатов проводимых измерений с разработкой предложений по принятию Ростехнадзором регулирующих действий.

На примере энергоблока № 1 Ленинградской АЭС показано, что применение приближения «точечной» кинетики, реализованного в штатных системах измерения подкритичности на энергоблоках с РБМК-1000, при наличии сильных неоднородностей радиального распределения энерговыделения в подкритическом реакторе приводит к некорректным результатам. Предложен альтернативный метод расчетно-экспериментального определения подкритичности реактора РБМК-1000 с использованием обобщенной теории гетерогенного реактора, позволяющий повысить точность получаемых результатов.

Разработаны предложения по проекту федеральных норм и правил «Требования к управлению ресурсом систем и элементов исследовательских ядерных установок».

По результатам анализа действующих нормативных документов и рекомендаций МАГАТЭ, касающихся вопросов управления ресурсом ОИАЭ, разработаны предложения к проекту «Требования к управлению ресурсом систем и элементов исследовательских ядерных установок», а также рекомендации по внесению изменений в НП 024–2000 с учетом введенного в действие НП-096–15 «Требования к управлению ресурсом оборудования и трубопроводов атомных станций. Основные положения».

Мероприятие 297. Обоснование принципов и разработка рекомендаций по оптимизации регулирования систем радиационного мониторинга окружающей среды на объектах использования атомной энергии.

В рамках данного мероприятия разработаны предложения по совершенствованию существующей нормативной базы в части обеспечения безопасности при осуществлении ОИАЭ сбросов радиоактивных веществ в объекты окружающей среды, отличные от поверхностных водных объектов, в том числе определены критерии, на основании которых может быть разработана методика установления нормативов ДС РВ на поля фильтрации АЭС.

Мероприятие 298. Разработка элементов систем государственного учета и контроля ядерных материалов, радиоактивных веществ и радиоактивных отходов.

В рамках данного мероприятия выполнен комплекс НИР.

Разработаны окончательные редакции проектов руководств по безопасности:
«Рекомендации по структуре и содержанию инструкции по учету и контролю ЯМ в ЗБМ и положения по учету и контролю ЯМ в организациях, осуществляющих деятельность с ЯМ»;
«Рекомендации по проведению административного контроля в рамках системы учета и контроля РВ и РАО в организации».

Доработаны окончательные редакции проектов документов:
«Основные правила учета и контроля радиоактивных веществ и радиоактивных отходов в организациях» (изменения в НП-067-11) с учетом поступивших замечаний для опубликования;
«Рекомендации по форме паспорта и составу данных о радионуклидном источнике, необходимых для целей государственного учета и контроля РВ и РАО» для представления на утверждение.

Мероприятие 299. Разработка методологии и создание компьютерной системы информационного обеспечения, регулирующей деятельность при нормальной эксплуатации объектов использования атомной энергии и при авариях.
В рамках данного мероприятия выполнен комплекс НИР, в результате которых выполнена расчетно-экспериментальная оценка достоверности мониторинга радиационной нагрузки оборудования действующих энергоблоков ВВЭР-440, подверженного реакторному облучению, а также расчетно-экспериментальная оценка программ мониторинга радиационной нагрузки корпусов действующих энергоблоков ВВЭР-1000.

Показано, что достоверность определения флюенса быстрых нейтронов на корпусах реакторов АЭС с ВВЭР характеризуется неопределенностью ± 10–15 % в местах проведенного контроля.

По результатам последних расчетно-экспериментальных исследований на энергоблоках с ВВЭР выявлены закономерности формирования поля нейтронов на оборудовании ВВЭР. Разработаны рекомендации по оценкам старения оборудования действующих ВВЭР в рамках программ мониторинга радиационной нагрузки оборудования. Рекомендации распространяются на все этапы проведения мониторинга радиационной нагрузки оборудования (расчетная оценка, учет при эксплуатации, прогноз на конец срока службы). Учет рекомендаций позволит получить консервативные оценки параметров радиационной нагрузки для их использования при анализе радиационного охрупчивания незаменяемого оборудования АЭС с ВВЭР.

Выполнен верификационный отчет программного комплекса PSG-2/Serpent для расчета эффективного коэффициента размножения нейтронов в системах с ЯДМ.

В результате верификации программного средства SERPENT определена погрешность расчета $K_{эфф}$ для спектра систем с ядерными делящимися материалами, включая топливо реакторов типа ВВЭР, РБМК, реакторов на быстрых нейтронах, а также систем, содержащих растворы урана и плутония, что позволит повысить качество научно-технической поддержки Ростехнадзора. Программное средство SERPENT по точности расчета $K_{эфф}$ не уступает программным средствам, используемым предприятиями отрасли, и может быть использован для независимой оценки $K_{эфф}$ при экспертизе безопасности.

Мероприятие 300. Научное и информационно-аналитическое обеспечение физической защиты ядерных материалов.

В рамках данного мероприятия выполнен комплекс НИР, в результате которых:
доработана окончательная редакция проекта руководства по безопасности «Рекомендации по составу и содержанию объектовых документов по физической защите радиоактивных веществ, радиационных источников и пунктов хранения» для представления на утверждение;
разработана окончательная редакция проекта руководства по безопасности «Рекомендации по проведению анализа уязвимости радиационного объекта»;
разработаны предложения по совершенствованию методологии анализа нарушений в области учета, контроля и физической защиты с использованием автоматизированной информационной системы по ядерной и радиационной безопасности (АИС ЯРБ) Ростехнадзора.

Мероприятие 318. Разработка методологии оценки состояния радиационной безопасности на радиационно опасных объектах, относящихся к прежней и текущей деятельности.

В рамках данного мероприятия выполнен комплекс НИР, в результате которых:
разработана окончательная редакция проекта руководства по безопасности «Оценка пожаровзрывоопасности сорбционных систем при переработке отработавшего ядерного топлива»;
доработана окончательная редакция проекта руководства по безопасности «Рекомендуемые методы расчета параметров, необходимых для разработки нормативов допустимых сбросов радиоактивных веществ в водные объекты» для представления на утверждение;

разработана методика для оценки прогнозных графиков повторяемости магнитуд землетрясений по геологическим данным района размещения объектов использования атомной энергии, а также выполнен анализ детального обоснования геодинамических условий размещения ряда ОИАЭ: Кольская АЭС, НИИАР, Нововоронежская АЭС, Ростовская АЭС.

Анализ результатов сейсмического районирования и альтернативных оценок сейсмичности районов размещения АЭС и ХОЯТ показал неоднозначность определения сейсмичности площадки ПЗ и МРЗ на основании региональных геолого-геофизических, геодинамических, сейсмотектонических и сейсмологических данных и невозможность оценки параметров запроектного расчетного землетрясения (ЗРЗ).

Региональные зоны ВОЗ не обеспечивают безопасное размещение АЭС и ХОЯТ в пределах целикового блока земной коры, ненарушенного активными разломами и геодинамическими зонами — потенциальными зонами ВОЗ.

В результате реалистичные оценки сейсмической опасности не отвечают требованию консерватизма при разработке проекта с учетом редких событий.

Методика основана на модели, отражающей дискретные свойства земной коры и очагов землетрясений.

Мероприятие 319. Разработка методов оценки безопасности для объектов ядерного топливного цикла.

В рамках данного мероприятия выполнен комплекс НИР, в результате которых:

разработана вторая редакция проекта ФНП «Установки по производству плутонийсодержащего ядерного топлива. Требования безопасности»;

подготовлены результаты расчетов параметров аварийного выброса АЭС с реакторами типа РБМК-1000, а также подготовлены расчетные математические модели для оценки аварийных выбросов возможных при авариях на АЭС с реакторами типа РБМК-1000, определены сценарии развития возможных аварий на АЭС с РУ РБМК-1000 и коэффициенты, характеризующие активность радионуклидов, проникающих в условиях аварий через физические барьеры;

разработана методика экспресс-оценки аварийных выбросов в случае аварии на энергоблоках с реакторами типа РБМК-1000 с целью ее использования в ИАЦ Ростехнадзора;

разработано руководство по безопасности (РБ-110–16) «Рекомендации по разработке программ обеспечения качества при транспортировании радиоактивных материалов» (утверждено приказом Ростехнадзора от 27 января 2016 г. № 30).

Мероприятие 329. Разработка методов комплексного анализа для оценки безопасности ядерно и радиационно опасных объектов.

В рамках данного мероприятия выполнен комплекс НИР.

Доработаны окончательные редакции проектов изменений в ФНП с учетом поступивших замечаний для опубликования:

«Общие положения обеспечения безопасности радиационных источников»;

«Требования к управляющим системам, важным для безопасности атомных станций».

Доработана окончательная редакция проекта ФНП «Требования к содержанию отчета по обоснованию безопасности АС с реактором типа ВВЭР» (взамен НП-006–98), с учетом поступивших замечаний для опубликования.

Разработаны модели активных зон реакторных установок ВВЭР-1000 (В-338, В-187) — Нововоронежской АЭС 5 блок, блоки 1 и 2 Калининской АЭС, а также (В-320) блоков № 3 и № 4 Калининской АЭС, блоков № 1, № 2 и № 3 Ростовской АЭС, блоков № 1, № 2, № 3 и № 4 Балтийской АЭС.

Верификация расчетных моделей путем сравнения результатов расчетов по ПС ДЕСНА с результатами проектных расчетов, выполненными по ПС БИПР-7а, продемонстрировала корректность разработанных моделей.

Мероприятие 330. Создание базы данных по применению федеральных норм и правил и по оценке нарушений эксплуатации ядерно и радиационно опасных объектов для научного обоснования, разработки критериев, принципов и основных требований к обеспечению ядерной и радиационной безопасности.

В рамках данного мероприятия выполнен комплекс НИР, в результате которых:
разработана вторая редакция проекта ФНП «Требования к строительным конструкциям зданий и сооружений атомных станций»;
разработана окончательная редакция изменений и дополнений в проект руководства по безопасности «Водно-химический режим атомных станций. Основные требования безопасности».

Разработаны руководства по безопасности:
«Рекомендации по составу и содержанию программы вывода из эксплуатации судов и иных плавсредств с ядерными реакторами и судов АТО» (утверждено приказом Ростехнадзора от 10 ноября 2015 г. № 452);
«Рекомендации по составу и содержанию отчета по обоснованию безопасности при выводе из эксплуатации судов и иных плавсредств с ядерными реакторами и судов АТО» (утверждено приказом Ростехнадзора от 15 сентября 2015 г. № 359);
«Рекомендации по составу и содержанию отчета по обоснованию безопасности контейнера двойного назначения для хранения и транспортирования отработавшего ядерного топлива» (утверждено приказом Ростехнадзора от 25 сентября 2015 г. № 372).

Мероприятие 331. Подготовка материалов для национальных докладов о выполнении Российской Федерацией конвенций «О ядерной безопасности» и «Объединенной конвенции о безопасности обращения с отработавшим топливом и о безопасности обращения с радиоактивными отходами».

В рамках данного мероприятия выполнен комплекс НИР, в результате которых подготовлены материалы для представления четвертого национального доклада Российской Федерации по выполнению обязательств Российской Федерации, вытекающих из «Объединенной конвенции о безопасности обращения с отработавшим топливом и о безопасности обращения с радиоактивными отходами», на Пятом совещании договаривающихся сторон в соответствии с руководящими документами МАГАТЭ (в части, относящейся к компетенции Ростехнадзора). Доклад представлен на Пятом совещании Договаривающихся сторон в штаб-квартире МАГАТЭ 15 мая 2015 года (г. Вена, Австрия). Доклад был подготовлен и представлен совместно с Госкорпорацией «Росатом» в соответствии с процедурами, установленными МАГАТЭ.

По итогам представления доклада было отмечено, что Российской Федерацией представлены всесторонние и содержательные доклады, подтверждающие выполнение обязательств, вытекающих из Объединенной конвенции.
Подготовлены результаты анализа подходов к совершенствованию регулирования безопасности АЭС Договаривающимися сторонами по конвенции «О ядерной безопасности» с целью учета уроков аварии на АЭС «Фукусима-Дайичи» (по материалам национальных докладов, представленных на Шестом совещании) с предложениями по повышению эффективности деятельности Ростехнадзора в следующих направлениях:

- защита от внешних воздействий,
- готовность к управлению авариями,
- готовность к тяжелым авариям,
- аварийное реагирование.

Мероприятие 332. Совершенствование информационно-аналитического обеспечения специалистов данными о состоянии ядерной и радиационной безопасности объектов использования атомной энергии.

В рамках данного мероприятия выполнен комплекс НИР, в результате которых разработаны расчетные схемы реакторной установки и герметичной оболочки и набор входных данных для блока АС с ВВЭР-1000/В-320 (блок 1 Балаковской АЭС).

Для расчетов сценариев тяжелых аварий была использована компьютерная программа MELCOR (версии 1.8.5), в среде которой разрабатывалась расчетная модель блока.

Определены наиболее значимые (вносящие наибольший вклад в вероятность тяжелых аварий) сценарии тяжелых аварий и разработана полная расчетная модель блока, позволяющая проводить расчеты для отобранных сценариев тяжелых аварий начиная с исходного события до выбросов радиоактивных веществ в окружающую среду.

Для блока № 1 Балаковской АЭС разработаны расчетные модели и наборы входных данных для проведения расчетов тяжелых аварий от исходного события до выбросов радиоактивных веществ в окружающую среду. Выполнен отбор сценариев тяжелых аварий на основе ВАБ для блока №1 Балаковской АЭС. Результаты работы предназначены для использования Информационно-аналитическим центром Ростехнадзора в условиях аварийного реагирования для оперативной оценки текущего состояния аварийного блока АС, прогнозирования развития аварийных процессов, оценки выбросов радиоактивных веществ в окружающую среду, оценки запасов времени на выполнение действий по управлению аварией.

Выполнена верификация разработанной компьютерной программы для формирования циклов нагружения оборудования и трубопроводов АЭУ с целью последующего использования этой программы для выполнения расчетов накопленного циклического повреждения металла оборудования и трубопроводов АЭУ, для оценки возможности продления срока службы оборудования и трубопроводов АЭУ и оценки их остаточного ресурса.

Разработанный программный комплекс для расчета циклической прочности оборудования и трубопроводов АЭУ позволяет существенно сократить время, необходимое для проведения анализа, за счет автоматического расчета всех необходимых значений и параметров с использованием зависимостей нормативных документов ПНАЭ Г-7-002-86 и РД ЭО 1.1.2.05.0330-2012.

Выполнена модификация компьютерной базы данных по дефектам оборудования и трубопроводов АЭС, указанная база данных была дополнена новыми данными, полученными в 2015 г. На основе анализа базы данных по дефектам оборудова-
Годовой отчет о деятельности Федеральной службы

В рамках данного мероприятия разработан методический документ «Пожаро-
взрывоопасность объектов ядерного топливного цикла, состоящий из 2 частей:
часть 1. Оценка специфики пожаровзрывоопасности объектов ядерного топлив-
ного цикла;
часть 2. Структура предотвращения пожаровзрывоопасности объектов ядерно-
го топливного цикла.

Мероприятие 334. Разработка с использованием подходов Международного агентства
по атомной энергии и других международных организаций системы информационно-
справочной поддержки деятельности в области ядерной и радиационной безопасности.
В рамках данного мероприятия выполнен комплекс НИР, в результате которых:
доработана окончательная редакция проекта руководства по безопасности «Рекоменда-
ции к разработке вероятностного анализа безопасности для исследователь-
ских ядерных реакторных установок» для представления на утверждение;
актуализирована версия российского сегмента международной сети органов ре-
гулирования ядерной и радиационной безопасности при использовании атомной
энергии на основе обобщения опыта регулирования ядерной и радиационной без-
опасности с учетом рекомендаций Международного агентства по атомной энергии.

Взаимодействие с федеральными органами исполнительной власти, академиче-
скими и прикладными институтами, высшими учебными заведениями, другими ор-
ганизациями

Взаимодействие с федеральными органами исполнительной власти, академи-
ческими и прикладными институтами, высшими учебными заведениями, другими организациями в 2015 г. проводилось по всем основным направлениям деятельнос-
ти ФБУ «НТЦ ЯРБ».
ФБУ «НТЦ ЯРБ» обеспечивало научно-техническую поддержку по вопросам ре-
гулирования ядерной и радиационной безопасности взаимодействия Ростехнадзо-
ра со структурными подразделениями ГК «Росатом», МЧС России, Минприроды
России, Ростехнадзора, ФМБА России и другими федеральными органами ис-
полнительной власти.
По основным направлениям деятельности ФБУ «НТЦ ЯРБ» в рамках договоров
взаимодействие осуществлялось с Ростехнадзором, АО «Концерн Росэнерго-
атом» (в т.ч. с филиалами), Государственной корпорацией по атомной энергии «Рос-
тов», АО «СХК», АО «ТВЭЛ», АО «УЭХК», АО «АТОМПРОЕКТ», АО «НИФХИ
им. Л.Я. Карпова», АО «НИЦ «Строительство», АО «ОДЦ УГР», АО ОКБ «ГИД-
РОПРЕСС», АО «Энерготекс», НИЦ «Курчатовский институт», АО «РАОПРО-
Формы и методы работ по координации НИР. Проблемные вопросы и задачи на будущее

Работа по координации НИР проводится через участие специалистов ФБУ «НТЦ ЯРБ» в деятельности научных, научно-технических и общественных органов и организаций атомной отрасли, в том числе НТС, его секций и технических комитетов Ростехнадзора; НТС Госкорпорации «Росатом» и его секций; НТС АО «Концерн Росэнергоатом», НТС ФГУП «РосРАО».

Участие сотрудников в работе Российской научной комиссии по радиологической защите (РНКРЗ) укрепляет координацию НИР в части гигиенических аспектов радиационной безопасности человека и окружающей среды.

Формирование адекватного восприятия общественностью государственной политики в сфере надзора и регулирования ядерной и радиационной безопасности осуществляется как через деятельность в Общественном совете Ростехнадзора, так и путем распространения соответствующих материалов в информационной сети Ростехнадзора.

Участие сотрудников ФБУ «НТЦ ЯРБ» в деятельности Ядерного общества России и его Молодежного отделения не только укрепляет межотраслевое взаимодействие при апробации результатов НИР, но и способствует привлечению нового поколения сотрудников в атомную отрасль России и ее регулирующий орган.

Руководство Ростехнадзора и ФБУ «НТЦ ЯРБ» определило следующие проблемные вопросы и связанные с ними задачи организации на 2016 год и на дальнейшую перспективу:

развитие научно-методической основы для реализации возложенных на Ростехнадзор полномочий с учетом потенциальной опасности объектов использования атомной энергии и деятельности в области использования атомной энергии;
совершенствование нормативной правовой базы деятельности Ростехнадзора в области использования атомной энергии в связи с реализацией ФЗ «О стандартизации в Российской Федерации»;
совершенствование нормативной правовой базы регулирования и контроля выбросов и сбросов радиоактивных веществ в окружающую среду;
обеспечение инкорпорации нормативных правовых актов СССР и РСФСР в области использования атомной энергии в законодательство Российской Федерации;
участие в выполнении плана действий Ростехнадзора по реализации рекомендаций и предложений пост-миссии МАГАТЭ «Комплексная оценка регулирующей деятельности в Российской Федерации» в ноябре 2013 года;
анализ тенденций изменения причин и характера нарушений в работе объектов использования атомной энергии, а также в системах учета, контроля и физической защиты ядерных материалов и радиоактивных веществ на объектах использования атомной энергии;
совершенствование деятельности по организации и проведению экспертиз безопасности объектов использования атомной энергии и видов деятельности в области использования атомной энергии.
2.6.2. Научно-исследовательские работы в области безопасности электрических и тепловых установок и сетей

В 2015 г. Ростехнадзором совместно с Федеральным бюджетным учреждением «Научно-технический центр Энергобезопасность» проводились научно-исследовательские работы (далее — НИР) по следующим темам:

1. «Применение инновационных технологий в целях повышения эффективности контрольно-надзорной деятельности в области безопасности гидротехнических сооружений».

Проведена оценка возможностей развития Комплексной системы информатизации и связи Ростехнадзора по автоматизации процесса информационного обеспечения в режиме постоянного контроля технического состояния и безопасности ГТС. Получены новые научные данные прикладного характера. Результаты НИР будут использоваться при подготовке проектов нормативных документов, докладов по вопросам компетенции Ростехнадзора в области безопасности ГТС, проведения проверок поднадзорных объектов.

2. «Методологическое обеспечение деятельности инспекторов Ростехнадзора по вопросам безопасности при эксплуатации объектов электроэнергетики».

Для инспекторского состава Ростехнадзора были проведены вебинары в целях обмена опытом контрольно-надзорной деятельности по следующим вопросам:

методологическое обеспечение деятельности по повышению эффективности расследования причин аварий в электроэнергетике и эффективности противоаварийных мероприятий для предотвращения аварий с использованием инновационных технологий;

методологическое сопровождение деятельности по осуществлению мероприятий при выдаче разрешений на допуск в эксплуатацию тепловых и электрических энергоустановок.

По результатам проведения вебинаров подготовлены методические материалы, которые могут использоваться в качестве пособия для инспекторского состава Ростехнадзора.

3. «Разработка проектов редакций нормативного правового акта «Методические указания по проверке гидротехнических сооружений на этапе их эксплуатации».

Разработан проект нормативного правового акта и подготовлен к утверждению в 2016 г. Методические указания предназначены для применения должностными лицами Ростехнадзора при проверках гидротехнических сооружений, находящихся в эксплуатации.

4. «Научно-техническое сопровождение подготовки к утверждению и внедрению нормативных правовых актов в области безопасности ГТС и безопасности в электроэнергетике».

Работа проводилась в отношении 12 нормативных документов. В 2015 г. утверждены два нормативных правовых акта:

руководство по безопасности «Методические рекомендации по организации и осуществлению государственного строительного надзора на объектах электроэнергетики» (приказ Ростехнадзора от 15 июля 2015 г. № 276);

руководство по безопасности «Методические рекомендации по составу и содержанию информации, обосновывающей выдачу Заключения о соответствии законченного строительством (реконструированного) объекта капитального строительства электроэнергетики проектной документации, требованиям технических
рекламентов (норм и правил), требованиям энергетической эффективности и тре-
бованиям по оснащенности объекта капитального строительства электроэнергети-
ки приборами учета используемых энергетических ресурсов» (приказ Ростехнадзо-
ра от 15 июля 2015 г. № 275).

5. «Подготовка научно обоснованных заключений по актам расследования при-
чин аварий на объектах электроэнергетики и гидротехнических сооружениях».

Была продолжена работа по анализу коренных причин аварий в области электро-
энергетики и гидротехнических сооружений. Выполненные работы позволили вы-
явить тенденции в динамике аварий в электроэнергетике. Сравнительный анализ результа-
тов исследований причин аварий за 2011—2014 гг. позволяет отметить сни-
жение числа аварий в 2015 г.

При проведении НИР осуществлялось взаимодействие с федеральными органа-
ми исполнительной власти, в том числе с Минэнерго России, Минприроды Рос-
сии, МЧС России, а также с академическими и прикладными институтами и друг-
ymi организациями.

Основными задачами научного обеспечения регулирующей деятельности в об-
ласти безопасности электрических и тепловых сетей и безопасности гидротехниче-
ских сооружений являются:

работы по актуализации положений федерального законодательства, относи-
щихся к вопросам обеспечения безопасности объектов электроэнергетики, по вне-
сению научно обоснованных изменений в федеральные законы «Об электроэнер-
гетике», «О безопасности гидротехнических сооружений» и в иные нормативные
правовые акты;

разработка и научно-методическое обоснование новых подходов к государст-
венному регулированию на объектах электроэнергетики, имеющих высокую значи-
мость для регулирования энергетической безопасности, в том числе внедрение в
этих целях риск-ориентированного подхода и дистанционного контроля безопасно-
сти поднадзорных объектов осуществлению контрольно-надзорной деятельности.

Важным направлением остается научное обеспечение развития международно-
го сотрудничества в области электроэнергетики и безопасности гидротехнических
сооружений с целью совершенствования нормативного регулирования и контроль-
но-надзорной деятельности в отношении этих объектов

2.7. Информирование общественности

Для обеспечения реализации прав граждан и организаций на доступ и получение
информации о деятельности Ростехнадзора в соответствии с Федеральным законом
от 9 февраля 2009 г. № 8-ФЗ «Об обеспечении доступа к информации о деятельнос-
ти государственных органов и органов местного самоуправления» и руководствуясь
принципами открытости Ростехнадзор в 2015 г. вел плановую работу по информи-
рованию средств массовой информации (СМИ) о деятельности Ростехнадзора по
трем основным направлениям:

1. Размещение информации на официальном сайте Ростехнадзора по следую-
щим темам:

проведение официальных мероприятий с участием руководства Ростехнадзора;
проведение международных мероприятий с участием руководства Ростехнадзора;
ключевые события Плана деятельности Ростехнадзора на 2014—2018 годы;
проведение плановых и внеплановых проверок поднадзорных предприятий;
расследование причин аварий и несчастных случаев (еженедельное обновление); проведение и итоги форума-диалога «Промышленная безопасность — ответственность государства, бизнеса и общества»; заседания коллегии, Научно-технического совета, Общественного совета при Ростехнадзоре и др.
2. Взаимодействие с журналистами.
В 2015 г. Ростехнадзор активно взаимодействовал с основными федеральными средствами массовой информации. Публикации, касающиеся деятельности ведомства, выходили:
в газетах: «Труд», «Известия», «КоммерсантЪ», «Российская газета», «Аргументы и факты», «Комсомольская правда» и др.;
в информационных агентствах: ТАСС, «Интерфакс», МИА «Россия сегодня»;
на телеканалах: Москва 24, РБК, Россия 24, LifeNews и др.;
Ростехнадзор также участвует в выпуске журналов «Безопасность труда в промышленности», «Промышленность и безопасность», «Берг-Коллегия» (ежемесячно) и «Ядерная и радиационная безопасность» (ежеквартально), в которых публикуется информация о текущей деятельности Ростехнадзора, мероприятиях с участием представителей Ростехнадзора, нормотворческой деятельности и др.
В 2015 г. вышло 18 интервью с руководством о деятельности Ростехнадзора:
интервью руководителя Ростехнадзора А.В. Алешина газете «Известия»;
интервью руководителя Ростехнадзора А.В. Алешина на Радио России в Программе «Персона грата»;
интервью руководителя Ростехнадзора А.В. Алешина Интерфакс;
интервью руководителя Ростехнадзора А.В. Алешина журналу «Де Факто» (Армения);
интервью руководителя Ростехнадзора А.В. Алешина ежедневной областной газете «Кузбасс»;
интервью руководителя Ростехнадзора А.В. Алешина федеральному научно-практическому журналу «Уголь Кузбасса»;
интервью заместителя руководителя В.В. Козивкина газете «КоммерсантЪ»;
интервью заместителя руководителя В.В. Козивкина — заместителя руководителя А.Л. Рыбаса «РБК-ТВ»;
интервью заместителя руководителя А.Л. Рыбаса телеканалу «Россия»;
интервью заместителя руководителя А.Л. Рыбаса Открытом Правительству;
статья заместителя руководителя А.Л. Рыбаса в Российской газете;
интервью заместителя руководителя А.В. Ферапонтова РИА НОВОСТИ;
интервью заместителя руководителя Б.А. Красных ТАСС;
интервью заместителя руководителя С.Г. Радионовой газете «Труд»;
интервью заместителя руководителя С.Г. Радионовой «Российской газете»;
интервью заместителя руководителя С.Г. Радионовой журналу «БОСС»;
интервью заместителя руководителя С.Г. Радионовой журналу «Наука и технология трубопроводного транспорта нефти и нефтепродуктов»;
интервью заместителя руководителя А.В. Трембицкого Интерфакс.
Также был выпущен ряд интервью со специалистами Ростехнадзора, его консультационных и совещательных органов.
В 2015 г. проведены следующие пресс-конференции и брифинги:
16 июля 2015 г. состоялся брифинг заместителя руководителя С.Г. Радионовой в рамках проведения заседания секции НТС Ростехнадзора в Луховицах;
1 октября 2015 г. состоялся брифинг руководителя Ростехнадзора А.В. Алешина на форуме-диалоге «Промышленная безопасность — ответственность государства, бизнеса и общества»;
1 октября 2015 г. состоялся брифинг заместителя руководителя С.Г. Радионовой на форуме-диалоге «Промышленная безопасность — ответственность государства, бизнеса и общества»;
21 октября 2015 г. состоялась пресс-конференция статс-секретаря — заместителя руководителя А.Л. Рыбаса «Аттестация экспертов в области промышленной безопасности»;
16 декабря 2015 г. состоялся брифинг заместителя руководителя С.Г. Радионовой.
Ряд пресс-конференций был проведен на региональном уровне с участием руководителей территориальных органов Ростехнадзора.
В 2015 г. обработано более 938 запросов СМИ по вопросам:
проведения форум-диалога «Промышленная безопасность — ответственность государства, бизнеса и общества»;
соглашений о сотрудничестве между Ростехнадзором и другими ФОИВ, между Ростехнадзором и представителями бизнес-сообщества;
аттестации экспертов в области промышленной безопасности;
оценки готовности объектов электроэнергетики и теплоснабжения к работе в осенне-зимний период 2015—2016 гг.;
о создании рабочей группы по рассмотрению текущих результатов применения Технического регламента Таможенного союза;
о промышленной безопасности объектов нефтегазового комплекса;
o безопасности использования подъемных механизмов, а также по другим вопросам в сфере компетенции Ростехнадзора.
При возникновении аварийных ситуаций на поднадзорных опасных производственных объектах (ОПО) производилось незамедлительное информирование представителей СМИ о работе комиссий Ростехнадзора.
СМИ предоставлялась информация о нарушениях на поднадзорных объектах по телефону, давались разъяснения по поводу оперативных запросов.
3. Информирование СМИ о ключевых событиях.
Журналисты получали оперативные сообщения о нормотворческой деятельности Ростехнадзора, в частности, о таких документах, как:
приказ Ростехнадзора «Об утверждении формы единого реестра членов саморегулируемых организаций»;
законопроект «О деятельности саморегулируемых организаций (СРО) в сфере строительства»;
постановление Правительства Российской Федерации «О некоторых вопросах лицензирования деятельности по проведению экспертизы промышленной безопасности»;
приказ Ростехнадзора «О внесении изменений в Порядок проведения проверок при осуществлении государственного строительного надзора и выдачи заключений о соответствии построенных, реконструированных, отремонтированных объектов капитального строительства требованиям технических регламентов (норм и правил), иных нормативных правовых актов, проектной документации (РД-11-04—2006);
проект федерального закона «О внесении изменений в Градостроительный кодекс Российской Федерации и отдельные законодательные акты Российской Федерации и признании утратившими силу отдельных положений законодательных актов Российской Федерации» (в части совершенствования законодательства о самоуправляющихся организациях в сфере строительства);

законопроект «О внесении изменений в Федеральный закон «О теплоснабжении»;

законопроект «О внесении изменений в Федеральный закон «О безопасности гидротехнических сооружений»;

проект приказа Ростехнадзора «Об утверждении Методики оценки результативности деятельности научных организаций, находящихся в ведении Федеральной службы по экологическому, технологическому и атомному надзору, выполняющих научно-исследовательские, опытно-конструкторские и технологические работы гражданского назначения».

2.8. Работа с обращениями граждан

Всего в 2015 г. в Ростехнадзор поступило 23 238 обращений граждан. Территориальными органами за отчетный период было получено 16 690 обращений граждан, в центральный аппарат Ростехнадзора поступило 6548 обращений (28,2 % от всех полученных).

Количество Интернет-обращений составило:
в целом по Ростехнадзору — 43 % (9986 из 23 238 полученных сообщений);
в центральном аппарате — 86,5 % (5661 из 6548);
в территориальных органах — 26 % (4325 из 16 690).

На личном приеме в течение 2015 г. в Ростехнадзоре принято 604 гражданина, из них в центральном аппарате — 48; в территориальных органах — 556.

Наибольшее количество обращений граждан получено в Центральном управлении (2262), Северо-Западном управлении (1703) и Сибирском управлении (1578).

Анализ поступивших в 2015 г. обращений граждан в центральный аппарат Ростехнадзора показывает, что их тематика распределилась следующим образом:
по вопросам строительного надзора обратилось 27,7 % граждан;
по вопросам энергетического надзора — 16,4 % граждан;
по надзору за объектами нефтегазового комплекса — 15,1 % граждан; по лицензионно-разрешительной деятельности — 12,4 % граждан.

Также граждане обращались по вопросам общепромышленного, горного надзора, проведения аттестации экспертов в области промышленной безопасности, социальных проблем.

В 2015 г. в центральный аппарат Ростехнадзора поступило и было рассмотрено 38 обращений коррупционной направленности, в 2014 г. таких обращений рассмотрено 69.

В территориальных органах Ростехнадзора наибольшее количество обращений граждан поступило по вопросам энергетического надзора, строительного надзора и надзора за объектами нефтегазового комплекса.

В ходе рассмотрения обращений граждан, в случаях, предусмотренных действующим законодательством, территориальными управлениями Ростехнадзора в 2015 г. проведены 1522 проверки.
По результатам рассмотрения вопросов, поднятых в обращениях граждан, привлекались к административной ответственности должностные лица, выдавались акты-предписания, налагались штрафы, материалы контрольных мероприятий направлялись в органы прокуратуры, проводилось консультирование граждан по интересующим их вопросам и давались разъяснения.

В 2015 г. на сайте Ростехнадзора в разделе «Общественная приемная» размещались информационно-справочные материалы о работе с обращениями граждан, ответы на наиболее часто задаваемые гражданами вопросы, отражались результаты рассмотрения обращений.

В Ростехнадзоре проводилась работа по подготовке и проведению общероссийского дня приема граждан, который состоялся 14 декабря 2015 г.

В центральном аппарате и территориальных органах были проведены установочные и тестовые совещания, осуществлена актуализация информации на специальном Интернет-портале ССТУ.РФ.

В ходе проведения общероссийского дня приема граждан осуществлен личный прием, прием в режимах аудиосвязи, видеосвязи 86 граждан, обеспечено согласованное взаимодействие с другими органами власти Российской Федерации, в компетенцию которых входит решение поступивших вопросов.

В 2015 г. в территориальных органах Ростехнадзора проведено 48 организационных мероприятий по вопросам повышения эффективности работы с обращениями граждан.
III. МЕЖДУНАРОДНОЕ СОТРУДНИЧЕСТВО

Содержание международного сотрудничества в 2015 г. определялось основными направлениями деятельности Федеральной службы по экологическому, технологическому и атомному надзору и планом международного сотрудничества на 2015 год.

В течение 2015 г. в Ростехнадзоре было проведено 53 приема иностранных делегаций из 27 стран, в которых приняли участие 306 представителей зарубежных учреждений и международных организаций.

За границу было командировано 435 специалистов Ростехнадзора и подведомственных ему организаций, которые приняли участие в 243 зарубежных мероприятиях.

Для информирования иностранных партнеров о деятельности Ростехнадзора в 2015 г. велась работа по поддержанию в актуальном состоянии англоязычной версии официального интернет-сайта Ростехнадзора.

3.1. Международное сотрудничество в области атомного надзора

Многостороннее сотрудничество

Сотрудничество с МАГАТЭ

Участие в деятельности руководящих органов МАГАТЭ

Генеральная конференция МАГАТЭ

Делегация Ростехнадзора во главе с заместителем руководителя Ростехнадзора приняла участие в 59-й сессии МАГАТЭ (ГК), проходившей с 14 по 18 сентября 2015 г. в Австрии, г. Вене.

Во время работы были организованы и проведены двусторонние встречи с руководством Секретариата МАГАТЭ, руководителями органов регулирования ядерной и радиационной безопасности Вьетнама, Индонезии, Франции, США, Венгрии.

В ходе встречи с заместителем Генерального директора МАГАТЭ по ядерной и физической ядерной безопасности Д.Флори высокую оценку получил вклад Ростехнадзора в реализацию Плана действий МАГАТЭ по ядерной безопасности. Г-н Флори подчеркнул, что Российская Федерация является одной из немногих стран, разработавших свою национальную Программу мероприятий, которая зеркально отражает План действий МАГАТЭ, и Агентство регулярно получает отчеты Российской Федерации о выполнении Программы мероприятий.

Представитель ФБУ «НТЦ ЯРБ» также принял участие в состоявшемся 15—16 сентября в рамках Генеральной конференции Научном форуме «Атом в промышленности: радиационные технологии на благо развития».

Совет управляющих

В 2015 г. представитель Ростехнадзора на регулярной основе принимал участие в заседаниях Совета управляющих в качестве заместителя представителя Российской Федерации. В ходе заседаний Совета управляющих, состоявшихся в марте и сентябре 2015 г., была представлена информация о выполнении Программы мероприя-
тий по участию заинтересованных российских ведомств и организаций в реализации Плана действий МАГАТЭ по ядерной безопасности.

Участие в международных конференциях и симпозиумах МАГАТЭ по вопросам регулирования безопасности при использовании атомной энергии в мирных целях

В течение 2015 г. представители Ростехнадзора принимали участие в международных конференциях, симпозиумах и форумах, проводящихся под эгидой МАГАТЭ.

В период с 15 по 19 июня 2015 г. в Австрии, г. Вене, состоялась Международная конференция по обращению с отработавшим топливом ядерных энергетических реакторов: комплексный подход к заключительной стадии топливного цикла. В конференции принял участие представитель ФБУ «НТЦ ЯРБ», представивший стендовый доклад «Имплементация положений технического документа МАГАТЭ «Комплексное обоснование безопасности транспортирования и хранения отработавшего ядерного топлива в контейнерах двойного назначения» в российском нормативном документе».

В период с 23 по 26 июня 2015 г. в Австрии, г. Вене, состоялась Международная конференция по эксплуатационной безопасности. В конференции принял участие представитель ФБУ «НТЦ ЯРБ», выступивший с сообщением «Взаимосвязь подхода, основанного на знаниях, и подхода, основанного на навыках, в соответствии с новым российским руководством по безопасности, устанавливающим рекомендации к противоаварийной документации».

В период с 19 по 23 октября 2015 г. в Австрии, г. Вене, состоялась Международная конференция по обеспечению глобальной аварийной готовности и реагирования. В конференции приняли участие представитель Ростехнадзора в качестве участника дискуссии за «круглым столом» по теме «Интеграция безопасности и физической ядерной безопасности в случае аварийных ситуаций» и представитель ФБУ «НТЦ ЯРБ», представивший стендовый доклад «Совершенствование федеральных норм и правил в области использования атомной энергии в части аварийной готовности».

В период с 16 по 20 ноября 2015 г. в Австрии, г. Вене, состоялась Международная конференция «Исследовательские реакторы: безопасное управление и эффективное использование». В конференции принял участие представитель Ростехнадзора с докладом «Периодическое рассмотрение безопасности: основы и преимущества».

Технические и консультативные совещания МАГАТЭ по вопросам регулирования безопасности при использовании атомной энергии в мирных целях

В рамках этого направления деятельности МАГАТЭ представители Ростехнадзора и подведомственных ему организаций в 2015 г. участвовали в более чем 40 мероприятиях (технических и консультативных совещаниях, международных семинарах, учебных курсах) по вопросам безопасности АЭС и исследовательских ядерных реакторов, обращения с радиоактивными отходами, физической защиты ядерного материала и ядерных установок, культуры безопасности и управления знаниями.

В числе прочих мероприятий, проведенных МАГАТЭ в 2015 г., следует отметить шестое и седьмое заседания Руководящего комитета Глобальной сети по ядерной и физической безопасности (GNSSN) (7–8 мая и 24–25 ноября), в которых приняли участие представители Ростехнадзора и ФБУ «НТЦ ЯРБ». В ходе заседаний участники обменивались информацией о существующих региональных и тематических сетях знаний по ядерной безопасности, а также обсуждали вопросы определения приоритетных направлений развития GNSSN в 2016 г.
Кроме того, представитель Ростехнадзора принял участие в первом консультативном совещании по вопросу создания Восточно-европейской сети по ядерной безопасности (4—6 февраля, Австрия, г. Вена), а представитель ФБУ «НТЦ ЯРБ» — в семинаре по порталам национальных органов регулирования безопасности (NNRP) в рамках GNSSN (18—20 ноября, Германия, г. Берлин).

Делегация Ростехнадзора приняла участие в стартовом совещании в рамках Форума органов регулирования стран по вопросам безопасности малых модульных реакторов (Форум ММР) (23—27 марта, Австрия, г. Вена) и в заседании Руководящего комитета и рабочих групп Форума ММР (6—8 октября, Австрия, г. Вена). В ходе совещаний была представлена информация о регулирующей деятельности в отношении ММР в государствах — членах Форума ММР, обсуждены промежуточные итоги деятельности всех рабочих групп Форума ММР, вопросы логистики и финансирования Форума ММР, а также намечены планы дальнейшей деятельности.

Участие в заседаниях Комиссии и комитетах по нормам безопасности МАГАТЭ

В течение 2015 г. в Австрии, г. Вене, состоялись два заседания Комиссии по нормам безопасности (КНБ) МАГАТЭ (20—22 апреля и 11—13 ноября), в которых приняли участие заместитель руководителя Ростехнадзора, являющийся членом КНБ, и заместитель директора ФБУ «НТЦ ЯРБ». На заседаниях обсуждались нормы ядерной и радиационной безопасности, вопросы физической защиты, а также приоритетные направления деятельности КНБ, рассматривались вопросы дальнейшего изучения уроков аварии на АЭС «Фукусима» и внесения изменений в соответствующие нормы безопасности МАГАТЭ. Председатели комитетов по нормам безопасности традиционно представили отчеты о деятельности возглавляемых ими комитетов. На апреляском заседании обсуждался вопрос о создании нового комитета по нормам безопасности — Комитета по нормам безопасности в области аварийной готовности и реагирования. Представитель ФБУ «НТЦ ЯРБ» был номинирован в качестве заместителя члена указанного комитета от Российской Федерации. В связи с истечением пятого срока полномочий КНБ и продлением мандата на очередной четырехлетний срок (2016 — 2019 гг.) Ростехнадзор представил кандидатуру заместителя руководителя Ростехнадзора, курирующего вопросы регулирования безопасности при использовании атомной энергии в мирных целях, в качестве члена КНБ на 6-й срок ее полномочий.

В 2015 г. представители ФБУ «НТЦ ЯРБ» на регулярной основе принимали участие в заседаниях комитетов по нормам ядерной безопасности, нормам безопасности транспортировки и нормам безопасности отходов, а также созданного в 2015 г. Комитета по нормам безопасности в области аварийной готовности и реагирования в качестве члена и заместителей членов указанных комитетов, а представитель Ростехнадзора — в заседаниях Комитета по руководящим материалам в области физической ядерной безопасности в качестве заместителя члена.

Участие в мероприятиях в рамках Программы технического сотрудничества

Мероприятия в рамках региональных и межрегиональных проектов МАГАТЭ по вопросам регулирования безопасности при использовании атомной энергии в мирных целях

В 2015 г. представители Ростехнадзора и подведомственных организаций принимали участие в мероприятиях, реализуемых в рамках следующих региональных и межрегиональных проектов МАГАТЭ:
«Совершенствование потенциала органов регулирования безопасности в области проведения инспекций»;
«Совершенствование возможностей по управлению сроком эксплуатации АЭС с целью долгосрочной эксплуатации»;
«Совершенствование потенциала при обращении с радиоактивными отходами»;
«Совершенствование потенциала оценки ядерной безопасности через программу по оценке безопасности, образованию и обучению»;
«Оказание содействия при выводе из эксплуатации установок, использующих радиоактивные материалы»;
«Повышение эффективности использования и безопасности исследовательских реакторов с помощью объединений, коалиций и обмена наилучшей практикой»;
«Повышение эффективности регулирующих органов и обучение продвинутого уровня в области ядерной безопасности»;
«Создание устойчивой национальной инфраструктуры регулирования ядерной и радиационной безопасности»;
«Создание инфраструктуры безопасности для национальной ядерной программы».

Конвенция о ядерной безопасности

15 октября 2015 г. в Австрии, г. Вене, состоялось организационное совещание по подготовке к 7-му Совещанию по рассмотрению национальных докладов Договаривающихся сторон в рамках Конвенции о ядерной безопасности (КЯБ), в которой принял участие представитель Ростехнадзора. В ходе совещания были рассмотрены основные организационные вопросы по подготовке к 7-му Совещанию по рассмотрению: определены сроки проведения совещания и предоставления национальных докладов, страны — участницы КЯБ были распределены по 7 группам, выбраны официальные должностные лица 7-го Совещания по рассмотрению.

Объединенная конвенция о безопасности обращения с отработавшим топливом и о безопасности обращения с радиоактивными отходами

В период с 11 по 22 мая 2015 г. в Австрии, г. Вене, делегация Ростехнадзора во главе с заместителем руководителя Службы приняла участие в 5-м совещании Договаривающихся сторон по рассмотрению национальных докладов в соответствии с положениями Объединенной конвенции о безопасности обращения с отработавшим топливом и о безопасности обращения с радиоактивными отходами (ОК).

В ходе представления национального доклада Российской Федерации о выполнении обязательств в рамках ОК делегации Ростехнадзора выступила с презентацией по вопросам в указанной области, касающимся компетенции Ростехнадзора, а также с содокладом «Ответы на вопросы, поступившие к 4-му национальному докладу Российской Федерации». Кроме того, члены делегации Ростехнадзора приняли участие в обсуждении национального доклада и ответили на устные вопросы в ходе его обсуждения, а также приняли участие в заседаниях по обсуждению итогов рассмотрения других национальных докладов в других группах и пленарных заседаниях.

Участие в деятельности Форума по сотрудничеству органов регулирования

В период с 18 по 21 мая 2015 г. представитель Ростехнадзора принял участие в заседании Руководящего комитета Форума МАГАТЭ по сотрудничеству органов регулирования (ФОР), а также совместное заседание ФОР и Европейской комиссии. В ходе указанных мероприятий были обсуждены предложения по повышению эффективности работы ФОР, а также состоялся обмен информацией о мероприятиях, проводившихся в 2014–2015 гг. и планируемых к проведению в 2015 г. для «стран-новичков».

© Оформление. ЗАО НТЦ ПК, 2016
Пленарное заседание ФОР с участием представителей Ростехнадзора состоялось 18 сентября 2015 г. в Австрии, г. Вене, в ходе Генеральной конференции МАГАТЭ.

Участие в мероприятиях, проводимых под эгидой Агентства по ядерной энергии Организации экономического сотрудничества и развития (ЯЭО ОЭСР)

Участие в мероприятиях Агентства по ядерной энергии ОЭСР в качестве полноправного члена

1—2 июня 2015 г. во Франции, г. Париже, делегация Ростехнадзора во главе с руководителем А.В. Алешиным приняла участие в 33-м заседании Комитета по ядерному регулированию (КЯР) ЯЭО ОЭСР. В ходе заседания члены Комитета подвели итоги деятельности его рабочих и целевых групп, утвердили их планы работ, обсудили вопросы сотрудничества КЯР с другими комитетами ЯЭО ОЭСР, а также представили информацию о последних изменениях в сфере регулирования безопасности в области использования атомной энергии в своих странах. От Ростехнадзора было представлено краткое сообщение о значимых событиях в деятельности Ростехнадзора по лицензированию и надзору за ядерной и радиационной безопасностью за период с июня 2014 г. по май 2015 г.

3 июня 2015 г. во Франции, г. Париже, делегация Ростехнадзора во главе с руководителем А.В. Алешиным приняла участие в работе семинара высокого уровня «Актуальные вопросы и средства повышения культуры безопасности эффективного регулирующего органа (КБРО)». Семинар был посвящен истории развития и современным принципам КБРО, а также задачам по повышению ее уровня. Вопросы КБРО рассматривались в контексте ее влияния на эффективность деятельности самого органа регулирования, на повышение доверия к его решениям со стороны широкой общественности и заинтересованных организаций. Приверженность культуре безопасности, как одной из составляющих организационной культуры, рассматривалась в качестве импульса для повышения качества работы поднадзорных объектов.

По итогам семинара было отмечено, что обмен опытом всех заинтересованных сторон как внутри страны, так и на международном уровне является необходимым условием обеспечения КБРО. Участники семинара подчеркнули необходимость постоянной оценки уровня КБРО, используя для этого обратную связь и различные партнерские проверки. По завершении семинара А.В. Алешин провел рабочую встречу с Генеральным директором ЯЭО ОЭСР Уильямом Мэгвудом для обсуждения перспектив дальнейшего участия специалистов Ростехнадзора в деятельности ЯЭО ОЭСР.

30 июня 2015 г. в Ростехнадзоре (Россия, г. Москва) состоялась встреча руководителя Ростехнадзора А.В. Алешина с делегацией Агентства по ядерной энергии Организации экономического сотрудничества и развития (ЯЭО ОЭСР) во главе с генеральным директором ЯЭО Уильямом Мэгвудом в рамках его визита в Россию.

Во время встречи была представлена общая информация о системе государственного регулирования ядерной и радиационной безопасности в Российской Федерации и подробная информация о структуре, полномочиях и деятельности Ростехнадзора, в том числе о реализации двустороннего и многостороннего международного сотрудничества. Уильям Мэгвуд отметил полезность и информативность проведенной встречи, а также важность продолжения взаимодействия между Ростехнадзором и ЯЭО ОЭСР.

30 ноября — 1 декабря 2015 г. во Франции, г. Париже, делегация Ростехнадзора во главе с заместителем руководителя А.В. Ферапонтовым приняла участие в 34-м за-
седании Комитета по ядерному регулированию Агентства по ядерной энергии Организации экономического сотрудничества и развития (ЯЭО ОЭСР).

В ходе обсуждения текущих результатов деятельности рабочих и целевых групп Комитета были утверждены проекты рекомендательных документов, в разработке которых принимали участие представители Ростехнадзора.

1 декабря 2015 г. на заседании состоялось специальное обсуждение использования вероятностного и детерминистского анализа безопасности (ВАБ и ДАБ) при принятии решений органом регулирования. Приглашенные докладчики от Франции, США и Германии выступили с сообщениями по использованию ВАБ И ДАБ и ответили на вопросы в ходе дискуссии. В целом подходы участников обсуждения совпадают. По итогам обсуждения было решено не создавать в рамках ЯЭО ОЭСР дополнительных рабочих групп по ВАБ и ДАБ в каком-либо формате.

В отчетный период во Франции, г. Париже и г. Лионе, состоялись совещания следующих рабочих групп ЯЭО при участии представителей Ростехнадзора и подведомственных организаций:

11–13 февраля и 16–18 сентября 2015 г. — 3-е и 4-е совещания целевой группы высокого уровня по глубокоэшелонированной защите ЯЭО ОЭСР;

2–4 марта и 19–21 октября 2015 г. — совещания рабочей группы по вопросам регулирования новых проектов реакторов ЯЭО ОЭСР;

18–20 марта и 8–10 сентября 2015 г. — 2-е и 3-е совещания целевой группы высокого уровня по культуре безопасности регулирующего органа ЯЭО ОЭСР;

13–16 апреля и 19–22 октября (г. Лион) 2015 г. — совещания рабочей группы по опыту эксплуатации ЯЭО ОЭСР;

Кроме того:

11–12 февраля 2015 г. во Франции, г. Париже, представители ФБУ «НТЦ ЯРБ» приняли участие в семинаре ЯЭО ОЭСР «Инновации в технологиях водоохлаждаемых реакторов»;

13–15 апреля 2015 г. во Франции, г. Париже, представитель Ростехнадзора принял участие в заседании Форума регуляторов Комитета по обращению с радиоактивными отходами ЯЭО ОЭСР;

8–9 сентября 2015 г. в Финляндии, г. Хельсинки, представитель Ростехнадзора принял участие в семинаре Форума регуляторов Комитета по обращению с радиоактивными отходами ЯЭО ОЭСР;

28 сентября — 1 октября 2015 г. в Испании, г. Севилья, представители ФБУ «НТЦ ЯРБ» приняли участие в Международной конференции «Усталость компонентов ядерного реактора».

Участие в мероприятиях в рамках Многонациональной программы оценки новых проектов АЭС

4 июня 2015 г. во Франции, г. Париже, делегация Ростехнадзора во главе с заместителем руководителя А.В. Ферапонтовым приняла участие в ежегодном заседании Группы принятия решений (ГПР) Многонациональной программы оценки новых проектов АЭС (МПОП).
Члены ГПР обсудили результаты деятельности рабочих групп Программы за прошедший год и планы по ее дальнейшей реализации. По итогам заседания был достигнут консенсус по ряду вопросов:

следует продолжить деятельность МПОП по завершению текущего срока работ (2018 г.);

следует завершить деятельность рабочих групп по конкретным вопросам, важным для безопасности; при возникновении новых задач создавать специальные группы с ограниченным сроком действия;

необходимо подготовить механизм включения вопросов обратной связи от опыта эксплуатации АЭС в сферу деятельности МПОП;

необходимо поддерживать взаимодействие с промышленностью по вопросам деятельности МПОП на том же уровне, что и раньше, или увеличить объем сотрудничества.

В 2015 г. в ОАЭ, г. Абу-Даби, и во Франции, г. Париже, состоялось два заседания Руководящего технического комитета (РТК) МПОП.

В ходе заседаний были затронуты следующие вопросы: деятельность рабочих групп МПОП, обмен информацией между членами МПОП и внутри рабочих групп МПОП по конкретным проектам, обзор событий, важных с точки зрения ядерной и радиационной безопасности в странах — членах МПОП, взаимодействие МПОП с другими организациями, в том числе с рабочей группой КЯР АЯЭ по регулированию новых реакторов, финансирование МПОП, обмен конфиденциальной и не подлежащей разглашению информацией, стратегии завершения деятельности рабочих групп МПОП.

В 2015 г. в России, г. Сосновый Бор, и во Франции, г. Париже, состоялось два совещания рабочей группы по реакторам ВВЭР с участием России, Индии, Финляндии, Турции и Китая:

19–21 мая 2015 г. в России, г. Сосновый Бор, состоялось четвертое совещание РГ-ВВЭР и технический тур на строящийся энергоблок № 1 Ленинградской АЭС-2. В рамках совещания РГ-ВВЭР в том числе прошло обсуждение с участием представителей ОАО Концерн Росэнергоатом, АО «Атомэнергопроект» и Ленинградской АЭС-2, в ходе которого была представлена информация о ходе сооружения энергоблоков Ленинградской АЭС-2 и Нововоронежской АЭС-2; затронуты вопросы, связанные с особенностями новых проектов реакторов ВВЭР, сооружаемых и планируемых к возведению в России, Индии, Турции и Финляндии;

7–9 декабря 2015 г. во Франции, г. Париже, состоялось пятое совещание РГ-ВВЭР. Участники совещания обсудили результаты деятельности и планы работ подгрупп РГ-ВВЭР. Представитель Ростехнадзора выступил с сообщением по теме «Процедура лицензирования изготовителей оборудования для АЭС».

В течение 2015 г. во Франции, г. Париж, и в Турции, г. Ан卡拉, состоялись следующие совещания подгрупп РГ-ВВЭР при участии представителей Ростехнадзора:

28–29 апреля (Турция, г. Ан卡拉) и 13–14 октября 2015 г. — совещания подгруппы по урокам аварии на АЭС «Фукусима-1»;

27–28 мая и 25–26 ноября 2015 г. — совещания подгруппы по тяжёлым авариям;

7–8 декабря 2015 г. — совещание подгруппы по корпусу реактора и первому контуру.

За отчетный период состоялись следующие совещания рабочих групп МПОП по конкретным вопросам, важным для безопасности, при участии представителей Ростехнадзора:

19–22 мая 2015 г. (Китай, г. Шэньчжэнь) и 27–30 октября 2015 г. (Франция, г. Ди- жон) — совещания рабочей группы по инспекциям поставщиков МПОП. В 2015 г. в
рамках деятельности указанной рабочей группы было проведено 5 совместных инспекций и 4 инспекции с участием наблюдателей. Рассматривается вопрос о пере- носе деятельности рабочей группы из МПОП в КЯР АЯЭ ОЭСР;

2–4 ноября 2015 г. (США, г. Атланта) — совещание рабочей группы по кодам и стандартам МПОП. В дальнейшем рабочая группа не планирует разработку новых документов, и количество ее совещаний сокращено до одного в год с целью отсле- живания деятельности по гармонизации норм и правил организациями — разработ- чиками стандартов и рабочей группой по оценке проектов реакторов и лицензиро- ванию (CORDEL) Всемирной ядерной ассоциации.

Участие в мероприятиях, проводимых в рамках Ассоциации западно-европейских органов регулирования безопасности при использовании атомной энергии в мирных це- лях (WENRA)

В 2015 г. представитель ФБУ «НТЦ ЯРБ» принял участие в 34-м заседании Рабо- чей группы WENRA по обращению с радиоактивными отходами и выводу из эксплуатации (WGWD) (2—6 марта, Франция, г. Париж). В ходе заседания участники обсудили представленные версии отчетов WENRA по переработке радиоактивных отходов и выводу из эксплуатации, а также обобщающего документа по всем аспек- там деятельности Рабочей группы.

Участие в мероприятиях, проводимых в рамках СНГ

В 2015 г. представители Ростехнадзора принимали участие в деятельности следую- щих рабочих групп Комиссии государств — участников СНГ по использованию атомной энергии в мирных целях (далее — Комиссия): экспертной группе по координации выполнения Рамочной Программы сотруд- ничества государств — участников СНГ в области мирного использования атомной энергии на период до 2020 года «СОТРУДНИЧЕСТВО «АТОМ-СНГ»;

рабочей группе по разработке Концепции ядерной и радиационной безопасно- сти государств — участников СНГ в области использования атомной энергии в мир- ных целях»;

рабочей группе по гармонизации нормативной правовой и нормативно-техни- ческой базы в области мирного использования атомной энергии;

рабочей группе по формированию комплексной системы поддержания безопасно- сти исследовательских ядерных установок;

рабочей группе по созданию платформы для практического сотрудничества в об- ласти вывода из эксплуатации ядерно и радиационно опасных объектов, обраще- ния с радиоактивными отходами, отработавшим ядерным топливом и реабилита- ции территорий.

Участие в 2015 г. в деятельности Комиссии включало рассмотрение и согласова- ние экспертами Ростехнадзора и его организаций технической поддержки проек- тов документов Комиссии, в том числе: Соглашения о сближении подходов в обла- сти использования атомной энергии в мирных целях по нормативному правовому и нормативно-техническому регулированию, оценке соответствия, стандартизации, аккредитации и метрологическому обеспечению; плана по реализации Концепции
ядерной и радиационной безопасности государств — участников СНГ в области использования атомной энергии в мирных целях и Соглашения об информационном взаимодействии государств — участников СНГ по вопросам перемещения радиоактивных источников.

Участие в мероприятиях в рамках Форума органов регулирования стран, эксплуатирующих реакторы ВВЭР

22-е ежегодное заседание Форума органов регулирования стран, эксплуатирующих реакторы ВВЭР, прошло 2—4 сентября в г. Ереване. В заседании приняла участие делегация Ростехнадзора во главе с заместителем руководителя А.В. Ферапонтовым, который выступил с сообщением о наиболее значимых событиях в регулировании ядерной и радиационной безопасности в России за период, прошедший после 21-го заседания Форума ВВЭР (Финляндия, г. Хельсинки, июнь 2014 г.).

Российская делегация также представила информацию по наиболее важным и интересным с точки зрения безопасности событиям, произошедшим на российских АЭС с реакторами ВВЭР за упомянутый период, и по деятельности Рабочей группы по анализу физики реакторов (РГФР), возглавляемой Россией, мандат деятельности которой рассчитан на период 2014—2016 гг.

По итогам заседания было принято решение о целесообразности продолжения деятельности Рабочей группы по вероятностному анализу безопасности (РГ ВАБ) и РГФР. Участники заседания предложили рассмотреть возможность прекращения деятельности Рабочей группы по регулированию безопасности при вводе в эксплуатацию новых блоков АЭС (РГВЭ) в связи с возможным дублированием ее деятельности и мероприятий рабочими группами в рамках Многонациональной программы оценки новых проектов АЭС, занимающимися вопросами ввода в эксплуатацию. Кроме того, все участники заседания высказались в пользу создания новой рабочей группы по вопросам старения действующих энергоблоков с реакторами ВВЭР. Более подробно эти вопросы решено рассмотреть на следующем заседании Форума ВВЭР в 2016 г., которое пройдет в России, в г. Мурманске, под председательством Ростехнадзора (предварительно в июле 2016 г).

В течение 2015 г. представители ФБУ «НТЦ ЯРБ» приняли участие в заседаниях Рабочей группы Форума ВВЭР по вероятностному анализу безопасности (11—13 февраля в Финляндия, в г. Хельсинки, и 10—12 июня, в Армении, в г. Ереване) и Рабочей группы по физике реакторов (20—22 июля в Армении, в г. Ереване), на которых представили сообщения по тематике деятельности соответствующих рабочих групп.

Информация о заседаниях Форума ВВЭР и деятельности его рабочих групп размещается Ростехнадзором на интернет-сайте www.wwerforum.org.

Участие в других мероприятиях (ассамблеи, конференции, симпозиумы, семинары, выставки и пр.), относящихся к компетенции Ростехнадзора

22—23 октября 2015 г. в Республике Корея, г. Сеуле, заместитель руководителя Ростехнадзора А.В. Ферапонтов принял участие в Конференции по сотрудничеству в области ядерной безопасности в Северо-Восточном Азиатском регионе (Третье совещание старших должностных лиц органов регулирования по вопросам, связанным с повышением безопасности при использовании атомной энергии в мирных целях). Программа совещания включала четыре пленарных заседания по следующим темам:

Структурный анализ аварии на АЭС «Фукусима-Дайичи» с точки зрения регионального сотрудничества в области ядерной безопасности в Северо-Восточном Азиатском регионе;
Культура ядерной безопасности;
Подведение итогов заседания тематических секций;
Пути дальнейшего развития сотрудничества по ядерной безопасности в Северо-Восточном Азиатском регионе.

Во время конференции также были проведены заседания четырех тематических секций:
Сотрудничество в области регулирования ядерной безопасности;
Сотрудничество в области аварийного реагирования и готовности к ядерным авариям;
Сотрудничество в области научно-исследовательских работ по вопросам ядерной безопасности;
Сотрудничество эксплуатирующих организаций.

23 октября участники Конференции посетили Корейский исследовательский институт атомной энергии (KAERI) в г. Тэджон, где ознакомились с исследованиями KAERI в области теплогидравлики и тяжелых аварий.

15–18 июня 2015 г. в Швеции, г. Буросе, представители ФБУ «НТЦ ЯРБ» и ФГУП ВО «Безопасность» Ростехнадзора приняли участие в пленарном заседании и встречах рабочих групп подкомитета SC2 «Радиационная защита» Технического комитета по вопросам стандартизации Международной организации по стандартизации (ISO) «Атомная энергия, ядерные технологии и радиационная защита» (ISO/TC 85).

Двустороннее сотрудничество

Сотрудничество с США

Взаимодействие с Комиссией по ядерному регулированию (КЯР) США

В период с 10 по 12 марта 2015 г. делегация Ростехнадзора приняла участие в конференции по обмену опытом регулирующей деятельности, ежегодно организуемой КЯР США. Конференция состояла из пленарных выступлений руководства КЯР США, технических сессий, постерных и настольных презентаций.

Делегация Ростехнадзора приняла участие в ряде технических сессий, посвященных вопросам вовлечения общественности в слушания по делам в области регулирования ядерной безопасности, поведения эксплуатационного персонала в чрезвычайных ситуациях, регулирования физической ядерной безопасности, регулирования ядерной безопасности на основе информации о рисках, эксплуатации механических компонентов реакторов действующих атомных станций и лицензировании реакторов малой и средней мощности.

Взаимодействие с Министерством энергетики США (МЭ США)

22–23 января 2015 г. в г. Вене (Австрия) в рамках Протокола между Правительством Российской Федерации и Правительством Соединенных Штатов Америки к Рамочному соглашению о многосторонней ядерно-экологической программе в Российской Федерации от 21 мая 2003 г. состоялось заседание Объединенного координационного комитета Ростехнадзора и МЭ США.

На заседании обсуждалось состояние сотрудничества в области регулирования безопасности при учете, контроле и физической защите ядерных материалов, в том числе текущие и возможные будущие работы. Стороны достигли договоренности, что совместный план работ, в котором определяется объем проектных работ с 2015 по
2017 г., является полезным инструментом в управлении проектом, отражающим состояние сотрудничества между Ростехнадзором и МЭ США в вышеуказанной области, который подлежит актуализации минимум один раз в год.

В течение года в Москве проведено 4 встречи совместной проектной группы, включающей сотрудников Ростехнадзора и представителей МЭ США, по обсуждению выполнения работ в рамках проекта в области регулирования безопасности при учете, контроле и физической защите ядерных материалов, радиоактивных веществ и радиационных источников, в частности, совершенствования надзорной деятельности и нормативных документов в указанной области.

Сотрудничество с Узбекистаном

Взаимодействие с Государственной инспекцией по надзору за геологическим изучением недр, безопасным ведением работ в промышленности, горном деле и коммунально-бытовом секторе при кабинете Министров Республики Узбекистан

23 июня 2015 г. в Москве по запросу узбекской стороны состоялись консультации представителей Ростехнадзора с сотрудниками Государственной инспекции по надзору за геологическим изучением недр, безопасным ведением работ в промышленности, горном деле и коммунально-бытовом секторе при кабинете Министров Республики Узбекистан.

В рамках консультации сотрудники центрального аппарата Ростехнадзора и ФБУ «НТЦ ЯРБ» обсудили с представителями узбекской стороны вопросы безопасного слива и транспортировки высокообогащенного жидкого отработавшего ядерного топлива исследовательского реактора ИИН-3М АО «Фотон», а также вывода из эксплуатации указанного реактора и двух гамма-установок.

Сотрудничество с Арменией

Взаимодействие с Государственным комитетом при Правительстве Республики Армения по регулированию ядерной безопасности (ГК ЯРБ)

27 октября 2015 г. заместитель руководителя Ростехнадзора А.В. Ферапонтов принял участие в заседании Совета безопасности атомной энергетики при Президенте Республики Армения, состоявшемся в Ереване.

Заседание проходило при участии Президента Армении С.А. Саргсяна и представителей организаций по регулированию и использованию атомной энергии Германии, Франции, Великобритании, России, Армении и Чехии.

В ходе мероприятия состоялись обсуждения докладов ГК ЯРБ о лицензионно-разрешительной и надзорной деятельности за 2013—2015 гг. и Армянской АЭС (ААЭС), включая информацию об эксплуатации и учетных нарушениях, а также о Программе продления срока эксплуатации энергоблока № 2 ААЭС.

Заместитель руководителя Ростехнадзора А.В. Ферапонтов включен в состав Совета безопасности атомной энергетики Указом Президента Республики Армения от 2 сентября 2015 г. № УП-491-А.
Сотрудничество с Германией

Мероприятия по реализации Соглашения с БМУ о сотрудничестве, обмене информацией и опытом в области лицензирования, надзора и экспертизы ядерной и радиационной безопасности

В соответствии с планом мероприятий в рамках двустороннего сотрудничества между Ростехнадзором и Федеральным министерством окружающей среды, охраны природы и безопасности ядерных реакторов Германии (БМУ), согласованным 25 июня 2014 г. на ежегодном совещании по обсуждению программы семинаров в Германии, г. Берлин, в 2015 г. была проведена рабочая встреча А24 «Поддержка регулирующего органа при адаптации планов аварийной готовности и реагирования к стандартам МАГАТЭ и Евросоюза» (Германия, г. Берлин, 30 ноября — 3 декабря). В рабочей встрече приняли участие представители ФБУ «НТЦ ЯРБ», выступившие с сообщением о применении моделей для экспресс-оценки критических функций безопасности АЭС с реакторами типа ВВЭР в целях оказания научно-технической поддержки Информационно-аналитическому центру Ростехнадзора.

Сотрудничество с Францией

Взаимодействие с Органом регулирования ядерной и радиационной безопасности Франции (ASN)

26 февраля 2015 г. делегация Ростехнадзора приняла участие в совместной инспекции госпиталя «Валь де Грас» в Париже (Франция), проводимой Парижским отделением ASN. Госпиталь содержит отделение ядерной медицины в составе диагностического подразделения, использующего гамма-камеры, и подразделения, использующего радионуклиды для проведения позитронно-эмиссионной томографии. По итогам проверки французской стороне был передан ряд наблюдений за работой инспекционной комиссии французского органа регулирования.

В период с 26 по 28 мая 2015 г. состоялся совместный семинар между Ростехнадзором и ASN по вопросам надзора за учреждениями, осуществляющими инспекционную деятельность в медицинских целях. В рамках семинара инспекторы ASN приняли участие в качестве наблюдателей в проверке Ростехнадзора, проведенной в ООО «Лечебно-диагностический центр Международного института биологических систем имени Сергея Березина» (ЛДЦ МИБС им. С. Березина) в г. Санкт-Петербурге. По итогам проверки французской стороне была передана рабочей инспекционной комиссии французского органа регулирования.

В период с 7 по 8 июля 2015 г. в Москве состоялся совместный семинар с экспертами ASN по вопросам надзора за учреждениями, осуществляющими инспекционную деятельность в медицинских целях. В рамках семинара инспекторы ASN приняли участие в качестве наблюдателей в проверке Ростехнадзора, проведенной в ООО «Лечебно-диагностический центр Международного института биологических систем имени Сергея Березина» (ЛДЦ МИБС им. С. Березина) в г. Санкт-Петербурге. По итогам проверки французской стороне была передана рабочей инспекционной комиссии Ростехнадзора и ASN.

В период с 7 по 8 июля 2015 г. в Москве состоялся совместный семинар с экспертами ASN по вопросам надзора за учреждениями, осуществляющими инспекционную деятельность в медицинских целях. В рамках семинара инспекторы ASN приняли участие в качестве наблюдателей в проверке Ростехнадзора, проведенной в ООО «Лечебно-диагностический центр Международного института биологических систем имени Сергея Березина» (ЛДЦ МИБС им. С. Березина) в г. Санкт-Петербурге. По итогам проверки французской стороне была передана рабочей инспекционной комиссии Ростехнадзора и ASN.

Взаимодействие ФБУ «НТЦ ЯРБ» с Институтом радиационной защиты и ядерной безопасности (IRSN)

24—26 февраля 2015 г. в Италии, г. Болонья, по приглашению IRSN представители ФБУ «НТЦ ЯРБ» приняли участие в рабочем совещании клуба пользователей...
программного средства ASTEC в рамках технического семинара по кодам, используемым для управления тяжелыми авариями в Европе (CESAM). В ходе работы семинара участники ознакомились с возможностями и международным опытом использования кода ASTEC.

23—25 марта 2015 г. во Франции, г. Париж, состоялся семинар по обсуждению вопросов безопасности реакторов на быстрых нейтронах с натриевым теплоносителем типа БН и демонстрационного реактора ASTRID. В рамках семинара обсуждались практические вопросы экспертизы безопасности реакторов на быстрых нейтронах и этапы дальнейшего сотрудничества ФБУ «НТЦ ЯРБ» и IRSN на три года.

В период с 29 июня по 3 июля 2015 г. в Исследовательском центре ядерной энергетики в г. Кадараш (Франция) сотрудниками IRSN и Общества по безопасности ядерных установок и реакторов Германии (GRS) проводился обучающий курс для ФБУ «НТЦ ЯРБ» по работе с программным средством ASTEC в рамках подписанного с IRSN лицензионного соглашения с последующим получением для использования новой версии указанного программного средства.

Сотрудничество с ЮАР

Взаимодействие с Национальным органом регулирования ядерной и радиационной безопасности ЮАР (NNR)

В период с 25 по 27 мая 2015 г. в г. Хартбиспоорт (Южно-Африканская Республика) состоялся совместный семинар с NNR по вопросам надзора за учетом, контролем и физической защитой ядерных материалов. Представители Ростехнадзора и ФБУ «НТЦ ЯРБ» выступили с презентациями о российском опыте надзора за учетом, контролем и физической защитой ядерных материалов, радиоактивных веществ и радиоактивных отходов, а также с информацией об опыте Ростехнадзора в проведении миссий МАГАТЭ по оценке эффективности деятельности органов регулирования.

Сотрудничество с Финляндией

Взаимодействие с Центром радиационной и ядерной безопасности Финляндии (STUK)

Двустороннее сотрудничество со STUK осуществлялось в соответствии с программой совместных мероприятий, согласованной на ежегодном совещании (25 февраля 2015 г., в г. Москва), в следующих областях: лицензирование и надзор за безопасностью при обращении с отработавшим ядерным топливом и радиоактивными отходами; регулирование безопасности атомных станций и исследовательских ядерных установок, надзор за учетом, контролем и физической защитой ядерных материалов, радиоактивных веществ и радиоактивных отходов.

В соответствии с программой сотрудничества между Ростехнадзором и STUK в 2015 г. состоялось 11 совместных мероприятий, а именно:
представители Северо-Европейского МТУ ЯРБ и Донского МТУ ЯРБ приняли участие в двух встречах по обмену информацией с инспекторами STUK: 18 марта 2015 г. (г. Хельсинки); 10 сентября 2015 г. (Ленинградская АЭС), в рамках которых были представлены сообщения по вопросам надзора за безопасностью при эксплуатации Ленинградской и Кольской АЭС во втором полугодии 2014 г. и первом полугодии 2015 г.;
в период с 22 по 23 апреля 2015 г. специалисты Ростехнадзора и ФБУ «НТЦ ЯРБ» принимали участие в семинаре по обсуждению требований к контрольно-измерительным приборам и вопросов кибер-безопасности АЭС, организованном в STUK, г. Хельсинки;
специалисты Ростехнадзора приняли участие в семинаре по обсуждению воп-
росов вывода из эксплуатации объектов использования атомной энергии и в тех-
ническом визите на исследовательский реактор FiR1 в г. Отаниеми, состоявшемся
2–3 июня 2015 г. в Финляндии;
представители СЕМТУ ЯРБ приняли участие в семинаре на тему «Использова-
nие опыта эксплуатации» в рамках сотрудничества STUK и АО «Концерн Росэнер-
goatom», состоявшемся 8–10 сентября 2015 г. на Ленинградской АЭС;
сотрудники Ростехнадзора и ФБУ «НТЦ ЯРБ» в период с 15 по 17 сентября 2015 г.
в г. Хельсинки принимали участие в семинаре по обсуждению организации и провед-
ения экспертизы безопасности при сооружении и эксплуатации пунктов захороне-
nия радиоактивных отходов с посещением пункта захоронения ONKALO;
16 и 17 сентября 2015 г. специалисты STUK в сопровождении представителей
Ростехнадзора посетили площадку сооружаемой Ленинградской АЭС-2 и наблюда-
ли за действиями инспектора Ростехнадзора по проверке документации (наличие строительных и операционных журналов, удостоверений работников, выполняв-
ших сварные соединения) и качества завершенных генподрядчиком работ по мон-
tажу и сварке трубопроводов;
семинар по порядку организации и проведения инспекций ядерной, радиацион-
nой и физической ядерной безопасности радиационно опасных объектов состоялся
22–23 сентября 2015 г. в г. Хельсинки при участии сотрудников Центрального аппа-
рата и ВМТУ по надзору за ЯРБ;
в период с 22 по 25 сентября 2015 г. состоялось участие специалистов STUK в
комплексных противоаварийных учениях на Ленинградской АЭС-1, включая на-
блудение из Информационно-аналитического центра Ростехнадзора и Кризисного
центра АО «Концерн Росэнергоатом», а также выезд непосредственно на площад-
ку атомной станции;
учебный курс по работе с компьютерным кодом APROS, организованный при
содействии STUK и компании Fortum, состоялся в период с 17 по 20 ноября 2015 г.
в ФБУ «НТЦ ЯРБ» (г. Москва);
совместный семинар по экспертизе безопасности проектов АЭС-2006 состоялся
27 ноября 2015 г. в ФБУ «НТЦ ЯРБ» (г. Москва). В рамках семинара обсуждались воп-
росы экспертизы безопасности сооружения энергоблоков Ленинградской АЭС-2
и АЭС «Ханхикиви», а также процедура лицензирования заводов-изготовителей и
организаций-проектировщиков оборудования для атомных станций в Российской
Федерации.
Кроме того, в рамках Соглашения о сотрудничестве Ростехнадзора и STUK в
2015 г. состоялась передача в адрес STUK экспертных заключений Ростехнадзора,
подготовленных в рамках процедуры лицензирования работ по сооружению энер-
gоблоков 1 и 2 Ленинградской АЭС-2, а также программы работ по устранению за-
mечаний вышеуказанных экспертных заключений.

Сотрудничество с Китаем
11 сентября 2015 г. в Москве представители Ростехнадзора приняли участие в
19-м заседании Российско-Китайской подкомиссии по ядерным вопросам в части,
касающейся сотрудничества с китайской стороной в области регулирования ядер-
ной и радиационной безопасности. В протокол были внесены итоги деятельности
за отчетный период, а также планы совместных мероприятий на 2016 г.
21 сентября 2015 г. в Ростехнадзоре состоялась встреча заместителя руководителя Ростехнадзора А.В. Ферапонтова с делегацией Департамента по охране окружающей среды провинции Цзянсу, КНР.
А.В. Ферапонтов представил общую информацию о системе государственного регулирования ядерной и радиационной безопасности в Российской Федерации и рассказал о структуре, полномочиях и деятельности Ростехнадзора, в том числе и по реализации двустороннего и многостороннего международного сотрудничества. В свою очередь китайская сторона представила презентацию о структуре и функциях Департамента по охране окружающей среды провинции Цзянсу.
27—28 октября 2015 г. Ростехнадзор посетила делегация Государственного управления по ядерной безопасности (NNSA) Китайской Народной Республики для участия в двустороннем семинаре.
Китайская сторона проинформировала о системе транспортировки радиоактивных материалов и о регулировании безопасности при обращении с источниками излучения в Китае.
Представители Ростехнадзора представили информацию о требованиях федерального законодательства к организациям, осуществляющим деятельность в области использования атомной энергии в Российской Федерации; требованиях федерального законодательства при обращении с РАО, в том числе с отработавшими источниками ионизирующих излучений; ознакомили китайскую делегацию с деятельностью Ростехнадзора по регулированию ядерной и радиационной безопасности при эксплуатации радиационных источников 4-й и 5-й категорий в Российской Федерации.
Сотрудники ФБУ «НТЦ ЯРБ» выступили с сообщениями о требованиях российских нормативных документов и норм по безопасности МАГАТЭ в области транспортирования радиоактивных материалов, а также об информационной системе поддержки принятия регулирующих решений при транспортировании отработавшего ядерного топлива реакторов ВВЭР и РБМК в транспортных упаковочных комплектах. 28 октября 2015 г. для делегации NNSA было организовано посещение ООО НТЦ «Нуклон», предоставляющего услуги по транспортировке и экспедированию радиоактивных грузов.
В третьем квартале 2015 г. посредством почтового обмена было подписано Соглашение между Ростехнадзором и NNSA о сотрудничестве в области регулирования ядерной и радиационной безопасности при использовании атомной энергии в мирных целях.
Сотрудничество с Бангладеш
В период с 28 марта по 1 апреля 2015 г. делегация Ростехнадзора во главе с заместителем руководителя А.В. Ферапонтовым посетила Бангладеш, г. Дакка, для проведения рабочей встречи с руководством Министерства науки и технологий Бангладеш и Бангладешского органа регулирования атомной энергии (BAERA) по обсуждению перспектив развития межведомственного сотрудничества, а также проведения семинара по обмену опытом лицензирования размещения и сооружения АЭС.
30 марта — 25 апреля в рамках Программы технического сотрудничества МАГАТЭ Ростехнадзором был организован технический визит в Россию представителя BAERA, в рамках которого были проведены теоретические и практические занятия по общим вопросам регулирования безопасности при использовании атомной энергии, включая посещение Донского МТУ ЯРБ Ростехнадзора, а также площадки Нововоронежской АЭС.
31 июля 2015 г. в Москве состоялась рабочая встреча А.В. Ферапонтова с делегацией BAERA и Бангладешской комиссии по атомной энергии (BAEC) по обсуждению вопросов межведомственного сотрудничества в области регулирования ядерной и радиационной безопасности, по результатам которой были достигнуты договоренности по дальнейшим шагам его развития.

12—13 октября Ростехнадзор посетила делегация BAERA во главе с профессором Наййумом Чоудхури. В ходе визита с делегацией BAERA встретились руководитель Ростехнадзора А.В. Алешин и заместитель руководителя Ростехнадзора А.В. Ферапонтов. Также бангладешская делегация посетила подведомственную Ростехнадзору организацию ФГУП ВО «Безопасность», которая поделилась своим опытом оказания поддержки органам регулирования зарубежных стран и передала на рассмотрение BAERA предложения по оказанию консультационных услуг в процессе развития национальной системы регулирования Бангладеш.

В период с 21 по 25 декабря 2015 г. в Москве состоялись первые экспертные консультации представителей Ростехнадзора со специалистами BAERA в рамках оказания бангладешской стороне консультационной поддержки при рассмотрении документов заявителя на получение лицензии на размещение АЭС «Руппур».

Сотрудничество с Вьетнамом

Делегация Ростехнадзора во главе с заместителем руководителя Ростехнадзора А.В. Ферапонтовым приняла участие в седьмом заседании Совместного российско-вьетнамского координационного комитета по атомной энергии (СКК), состоявшемся в Ханое в период со 2 по 3 февраля 2015 г. В рамках заседания СКК проведено заседание рабочей группы по регулированию ядерной и радиационной безопасности, на котором были обсуждены вопросы межведомственного сотрудничества Ростехнадзора и Вьетнамского агентства по радиационной и ядерной безопасности (ВАРЯБ), а также планы по организации совместных мероприятий в 2015 г.

Представитель Ростехнадзора в составе российской делегации принял участие в национальном научном семинаре по вопросам площадок размещения АЭС «Ниньтхуан-1» и АЭС «Ниньтхуан-2», проводившемся в Ханое в период с 19 по 20 марта 2015 г. Целью семинара было представление результатов исследований, проведенных вьетнамскими организациями в рамках национальных исследовательских проектов, связанных с изучением предполагаемых площадок размещения АЭС, а также обсуждение этих результатов с представителями заинтересованных сторон.

В период с 17 по 22 мая представители Ростехнадзора приняли участие во 2-й Национальной конференции по вопросам регулирования ядерной безопасности, представив информацию о российско-вьетнамском сотрудничестве в области регулирования ядерной безопасности, а также о российском опыте проведения экспертизы безопасности в процессе лицензирования разных этапов жизненного цикла АЭС.

В период с 22 по 23 июня 2015 г. представитель Ростехнадзора принял участие в первом заседании российско-вьетнамской рабочей группы по ядерной инфраструктуре, которое проводилось в Ханое в период с 22 по 26 июня 2015 г. Деятельность указанной рабочей группы будет направлена на координацию работ по развитию национальной инфраструктуры атомной энергии Социалистической Республики Вьетнам.

В период с 1 по 4 декабря 2015 г. в Ханое делегацией Ростехнадзора для представителей заинтересованных министерств и ведомств Вьетнам проводен семинар по вопросам регулирования физической ядерной безопасности. В ходе семинара со-
Состоялся обмен опытом по вопросам нормативно-правового регулирования, а также организации и проведения инспекций физической защиты ядерных материалов, ядерных установок и пунктов хранения ядерных материалов, учета и контроля ядерных материалов.

Сотрудничество с Боливией

В период с 7 по 9 декабря 2015 г. в Боливии, г. Ла-Пас, проведены российско-боливийские консультации по вопросу сооружения в Боливии Центра ядерной науки и технологий, в которых принял участие представитель Ростехнадзора. В ходе мероприятия состоялась встреча представителя Ростехнадзора с представителями Министерства углеводородов и энергетики Боливии, на которой были обсуждены перспективы оказания содействия боливийскому органу регулирования ядерной и радиационной безопасности в развитии национальной системы регулирования.

Сотрудничество с Египтом

Делегация Ростехнадзора во главе с заместителем руководителя Службы А.В. Ферапонтовым в период с 26 по 28 июля 2015 г. посетила с рабочим визитом Каир для проведения первой встречи межведомственного характера с представителями Египетского органа регулирования ядерной и радиологической безопасности (ENRRA). В ходе встречи А.В. Ферапонтов познакомил египетских коллег с российской системой регулирования ядерной и радиационной безопасности и российской нормативно-правовой базой в области использования атомной энергии. С учетом планов по развитию атомной энергетики Египта стороны обсудили перспективы межведомственного сотрудничества, направленного на обмен опытом и знаниями в области регулирования ядерной и радиационной безопасности.

В период со 2 по 5 ноября 2015 г. делегация ENRRA посетила Ростехнадзор для проведения рабочей встречи по обсуждению перспектив межведомственного сотрудничества, включая возможность оказания египетской стороне консультационных услуг организациями научно-технической поддержки Ростехнадзора, которые египетская делегация также посетила во время своего визита.

19 ноября в Каире в присутствии Президента Египта Абдель Фаттаха ас-Сиси подписан Меморandum о взаимопонимании между Федеральной службой по экологическому, технологическому и атомному надзору и Египетским органом регулирования ядерной и радиационной безопасности при использовании атомной энергии в мирных целях. Подписи под документом поставили заместитель руководителя Ростехнадзора А.В. Ферапонтов и заместитель председателя BAERA Валид Зидан.

Сотрудничество с Иорданией

Представитель Ростехнадзора принял участие в первом заседании российско-иорданской совместной рабочей группы по ядерной инфраструктуре, состоявшемся в Иорданском Хашимитском Королевстве, г. Амман, в период с 9 по 12 февраля 2015 г.

Сотрудничество с Ираном

В период с 11 по 14 марта 2015 г. состоялся рабочий визит представителей Иранского органа ядерного регулирования (ИОЯР) с целью обсуждения перспектив развития межведомственного сотрудничества, в рамках которого 10 марта 2015 г. с иранской делегацией встретился заместитель руководителя Ростехнадзора А.В. Трембицкий. По итогам визита был подписан Протокол о продлении действующего
контракта с ФГУП ВО «Безопасность» об оказании консультационных услуг на этапе эксплуатации АЭС «Бушер-1».

В период с 23 по 24 сентября 2015 г. представитель ИОЯР в качестве наблюдателя принял участие в комплексном противоаварийном учении на Ленинградской АЭС, которое проводилось ОАО «Концерн Росэнергоатом». За проведением учений он наблюдал в режиме реального времени из Информационно-аналитического центра Ростехнадзора совместно со специалистами Ростехнадзора.

10—13 ноября специалисты ИОЯР в качестве наблюдателей приняли участие в проверке объекта капитального строительства «Ростовская АЭС», проводившейся Донским МТУ ЯРБ.

Сотрудничество с Нигерией

Делегация Федеративной Республики Нигерия во главе с генеральным директором Нигерийского органа ядерного регулирования Лоуренсом Димом 1 апреля 2015 г. посетила Ростехнадзор для обсуждения перспектив межведомственного взаимодействия по вопросам регулирования ядерной и радиационной безопасности. По итогам визита достигнута договоренность по разработке и подготовке к подписанию межведомственного соглашения о сотрудничестве.

Сотрудничество с Республикой Беларусь

В период с 22 по 26 июня 2015 г. специалисты Департамента по ядерной и радиационной безопасности Министерства по чрезвычайным ситуациям Республики Беларусь (Госатомнадзор) приняли участие в проверке объекта капитального строительства «Нововоронежская АЭС-2». В состав белорусской делегации во главе с начальником Госатомнадзора О.М. Луговской помимо представителей Госатомнадзора входил специалист Департамента контроля и надзора за строительством Государственного комитета по стандартизации Республики Беларусь.

Представитель Ростехнадзора с докладом о российской нормативно-правовой базе в области использования атомной энергии принял участие в VII Международной конференции «Атомэкспо-Беларусь 2015», которая проводилась в Минске в период с 22 по 24 апреля 2015 г. с целью обсуждения вопросов развития атомной энергетики в Республике Беларусь, а также повышения эффективности сотрудничества между Россией и Беларусью в указанной области.

Делегация Ростехнадзора во главе с заместителем руководителя Ростехнадзора А.В. Ферапонтовым в период с 30 июня по 1 июля 2015 г. посетила Госатомнадзор с целью обсуждения вопросов межведомственного сотрудничества, а также площадки Белорусской АЭС с целью ознакомления с деятельностью белорусских инспекторов, на постоянной основе находящихся на площадке.

В период с 14 по 15 июля 2015 г. в Минске представители Ростехнадзора провели семинар по вопросам регулирования физической ядерной безопасности для специалистов заинтересованных министерств и ведомств Республики Беларусь.

По запросу белорусской стороны 5 августа 2015 г. в Москве проведено совещание с представителями Госатомнадзора по обмену опытом осуществления надзора за безопасностью при монтаже оборудования при сооружении АЭС.

В период с 22 по 24 сентября 2015 г. представители Ростехнадзора в качестве наблюдателей (консультантов) приняли участие в работе комиссии по оценке знаний инспекторского персонала Госатомнадзора.
Также в течение 2015 г. представители Ростехнадзора в качестве консультантов приняли участие в двух инспекциях, проведенных Госатомнадзором на сооружаемой Белорусской АЭС.

В 2015 г. продолжалась работа по согласованию проекта концепции программы союзного государства «Совершенствование подходов к регулированию безопасности при использовании атомной энергии, аварийной готовности и аварийному регулированию».

Сотрудничество с Турцией

В рамках межведомственного сотрудничества с Турецким агентством по атомной энергии (ТАЕК) в период с 21 по 24 апреля 2015 г. в Москве специалисты Ростехнадзора провели для инспекторов ТАЕК семинар по обмену опытом в области лицензирования изготовления оборудования для АЭС, а также организовали участие турецких специалистов в качестве наблюдателей в мероприятиях по оценке соответствия, проводимых ФГУП ВО «Безопасность» в филиале ОАО «АЭМ-Технологии» (завод «Атоммаш», г. Волгодонск).

Делегация Ростехнадзора 27 апреля 2015 г. посетила Анкару для проведения рабочей встречи по вопросам возможного оказания поддержки ТАЕК в процессе регулирования безопасности АЭС «Аккую». Во встрече по приглашению турецкой стороны также принял участие представитель Агентства по ядерной энергии ОЭСР.

В период с 5 по 9 октября 2015 г. делегация инспекторов ТАЕК приняла участие в качестве наблюдателей в проверке объекта капитального строительства «Нововоронежская АЭС-2, блоки 1, 2», проводимой Донским МТУ ЯРБ в рамках государственного строительного надзора.

3.2. Международное сотрудничество в области технологического надзора

Многостороннее сотрудничество

Участие в мероприятиях, проводимых в рамках СНГ

В соответствии с повесткой дня руководитель делегации Ростехнадзора проинформировал участников заседания об изменениях в законодательстве Российской Федерации по вопросам обеспечения промышленной безопасности на опасных производственных объектах и деятельности в этом направлении в течение года. Делегаты заслушали доклады Ростехнадзора: «О практике, формах и методах экспертизы/оценки (подтверждения) соответствия поднадзорных объектов Ростехнадзора»; «О проведенном сопоставительном анализе систем государственного регулирования промышленной безопасности в области надзора за оборудованием, работающим под избыточным давлением в странах — участницах МСПБ»; «О мониторинге состояния законодательства Евразийского экономического союза по техническому регулированию в части, касающейся технических устройств, применяемых на опасных производственных объектах»; «Об опыте оптимизации государственных услуг по выдаче разрешительных документов в области промышленной безопасности»; «Об актуализации интернет-сайта МСПБ и размещении информации об аварийности и производственном травматизме на опасных производственных объектах».
Члены МСПБ согласились с предложением Ростехнадзора о проведении в 2016 г. сравнительного анализа нормативно-правового регулирования в области промышленной безопасности на опасных производственных объектах предприятий переработки растительного сырья и подготовке предложений об осуществлении в последующие годы сопоставительного анализа нормативно-правового регулирования в области промышленной безопасности на опасных производственных объектах предприятий химической и горной промышленности.

Ростехнадзор, являясь членом МСПБ, отвечает за работу по ведению и размещению информации о деятельности МСПБ на официальном интернет-сайте МСПБ (далее — Сайт).

В конце 2015 г. Ростехнадзором инициирована работа по модернизации Сайта в целях создания более удобной и современной интернет-площадки для удаленного взаимодействия стран — участниц МСПБ.

Структура и контент обновленной версии Сайта разработаны с учетом предложений стран — участниц МСПБ.

В период с 12 по 13 августа 2015 г. в Москве состоялась рабочая встреча представителей Ростехнадзора с сотрудниками Комитета индустриального развития и промышленной безопасности Министерства по инвестициям и развитию Республики Казахстан и представителями Департамента по надзору за безопасным ведением работ в промышленности Министерства по чрезвычайным ситуациям Республики Беларусь.

В ходе встречи Стороны обменялись опытом осуществления государственного контроля за соблюдением требований Технического регламента Таможенного союза «О безопасности оборудования, работающего под избыточным давлением» и рассмотрели проблемные вопросы применения этого документа, в частности, обсудили наиболее частые замечания, выявляемые при анализе сертификатов и деклараций соответствия требованиям технического регламента.

По итогам встречи был подписан Протокол, в котором Стороны отметили необходимость продолжения и развития сотрудничества по вопросам внесения изменений в технический регламент.

В рамках работы Электроэнергетического Совета СНГ (ЭЭС СНГ) и в соответствии с Планом работы Комиссии по координации сотрудничества государственных органов энергетического надзора государств — участников СНГ (КГЭН) на 2013—2015 годы Ростехнадзор принял участие в 2015 г. в двух мероприятиях:

1. В 6-м заседании Комиссии по координации сотрудничества государственных органов энергетического надзора государств — участников СНГ (КГЭН) (Республика Беларусь, г. Минск, 8—11 апреля 2015 г.).

По итогам мероприятия одобрен проект макета сборника нормативно-технических документов в области энергетического надзора, используемых в государствах — участниках СНГ, принято решение просить Исполнительный комитет СНГ направить на рассмотрение заседания ЭЭС СНГ проект правила по технике безопасности при эксплуатации электроустановок, а также изучена возможность разработки единых правил устройства электроустановок для государств СНГ. Одобрен проект плана работы Комиссии на 2016—2018 гг.

В рамках программы 6-го заседания Комиссии проведен семинар на тему «Правила и организация допуска в эксплуатацию новых и реконструированных энергоустановок органами государственного энергетического надзора государств — участников СНГ», в ходе которого представители органов государственного энергетич
ческого надзора стран СНГ обменились информацией о полномочиях и опытом надзорной деятельности по допуску в эксплуатацию новых и реконструированных энергоустановок.

2. В 7-м заседании Комиссии по координации сотрудничества государственных органов энергетического надзора государств — участников СНГ (Республика Молдова, г. Кишинев, 10 — 11 сентября 2015 г.).

Участники заседания обсудили вопросы подготовки начальной редакции проекта правил техники безопасности при эксплуатации электроустановок, формирования сборника нормативных правовых технических документов в области энергетического надзора государств — участников СНГ в соответствии с макетом и разработки проекта, регламентирующего порядок допуска в эксплуатацию новых и реконструированных электроустановок органами государственного энергетического надзора государств — участников СНГ.

Участники заседания приняли решение продолжить работу по наполнению сборника нормативных правовых и технических документов в области энергетического надзора государств — участников СНГ материалами, поступившими от органов управления электроэнергетической и органов энергетического надзора государств — участников СНГ.

Участие в мероприятиях Организации экономического сотрудничества и развития (ОЭСР)

Делегация Ростехнадзора приняла участие в качестве наблюдателя в работе 25-го заседания Рабочей группы по химическим авариям Комитета ОЭСР по химии (г. Париж, Франция, 26—30 октября 2015 г.).

В ходе заседания делегация Ростехнадзора ознакомилась с разработанными в 2015 г. руководствами и методическими рекомендациями в части, касающейся предотвращения химических аварий, готовности к ним и реагирования на них; опытом работы Рабочей группы ОЭСР по химическим авариям в вопросах предотвращения, готовности и мер по ликвидации аварий с участием химически опасных веществ; отчетами о химических авариях в Германии, Японии, Корее, Чехии и других странах. Председатель Ростехнадзора выступил с отчетом по химическим авариям, произошедшим на поднадзорных химических предприятиях в 2014 г. При этом были проанализированы технические и организационные причины аварий, а также мероприятия по их устранению.

Участие в мероприятиях Европейской экономической комиссии ООН (ЕЭК ООН)

В период 10—14 мая 2015 г. делегация Ростехнадзора приняла участие в работе пятого совещания Рабочей группы по развитию Конвенции ЕЭК ООН о трансграничном воздействии промышленных аварий.

На заседаниях были согласованы процедура организации работы и план работы группы на двухгодичный период (2015—2016 гг.); принято решение о создании группы экспертов по правовым вопросам и группы экспертов по планированию землепользования в целях поддержки деятельности Рабочей группы; проведено обсуждение предложения Секретариата Конвенции о внесении поправок в текст Конвенции.

Делегация Ростехнадзора довела установленным порядком до сведения Секретариата Конвенции свою позицию в отношении варианта поправок к Конвенции.

Делегация Ростехнадзора совместно с представителями Минприроды России и Росреестра приняла участие в работе 6-го заседания Рабочей группы по разви-
По Конвенции ЕЭК ООН о трансграничном воздействии промышленных аварий (29 ноября — 3 декабря 2015 г., г. Женева, Швейцария), в ходе которого обсуждались изменения в действующий статус «Рабочей группы по осуществлению», в том числе наделение ее функциями по выявлению и контролю соблюдения положений Конвенции на территории суверенных государств — стран-участниц Конвенции. В результате проведенной дискуссии при поддержке представителей Армении и ЕС российской делегации удалось отстоять неизменность круга ведения «Рабочей группы по осуществлению» при одобренном увеличении периода отчетности раз в 4 года.

По инициативе Секретариата Конвенции на полях заседания Рабочей группы была организована встреча представителей ЕЭК ООН с российской делегацией, в ходе которой стороны обсудили вопросы взаимодействия в рамках реализации и осуществления Плана действий по Конвенции на период 2015–2016 гг.

В период 14–18 сентября 2015 г. (г. Крайстчерч, Новая Зеландия) делегация Ростехнадзора приняла участие в заседании Секторальной инициативы в области оборудования, предназначенного для использования во взрывоопасных средах (Рабочей группы) ЕЭК ООН совместно с Комитетом по сертификации оборудования для взрывоопасных сред (МЭК Ех) Международной электротехнической комиссии.

В ходе заседания его участники обсудили вопросы расширения международного сотрудничества в области признания результатов оценки соответствия оборудования, используемого во взрывоопасных средствах. При этом российская сторона представила предложения по пересмотру «Общей основы регулирования для оборудования, применяемого во взрывоопасной среде ЕЭК ООН».

Делегация Ростехнадзора приняла участие в заседании 25-й сессии Рабочей группы ЕЭК ООН по политике в области стандартизации и сотрудничества по вопросам нормативного регулирования (г. Женева, Швейцария, 2–3 декабря 2015 г.), на которой был представлен доклад о ходе деятельности Секторальной инициативы в области оборудования, предназначенного для использования во взрывоопасных средах. При обсуждении доклада была поддержана идея о сближении систем технического регулирования и промышленной безопасности Таможенного союза и Европейского союза.

В рамках реализации проекта «Безопасность плотин в Центральной Азии: создание потенциала и региональное сотрудничество» (далее — Проект) в Москве 9 апреля 2015 г. состоялась рабочая встреча представителей Ростехнадзора и ЕЭК ООН, на которой обсуждалась возможность оказания Ростехнадзором поддержки странам Центральной Азии в решении задач по обеспечению безопасности гидротехнических сооружений (ГТС).

Делегация Ростехнадзора приняла участие в региональном совещании по безопасности плотин в Центральной Азии, организованном по инициативе Европейской экономической комиссии ООН (3–4 декабря 2015 г., г. Алматы, Республика Казахстан).

В период с 8 по 9 декабря 2015 г. (г. Астана, Республика Казахстан) представители Ростехнадзора приняли участие в организованном ЕЭК ООН круглом столе на тему: «Совершенствование законодательства по безопасности гидротехнических соору-
жений Республики Казахстан». Российские эксперты выступили с сообщением на тему: «Обеспечение безопасности ГТС на примере Российской Федерации», доведя до присутствующих основные требования законодательства Российской Федерации в области безопасности гидротехнических сооружений и правила осуществления надзорной деятельности за владельцами гидротехнических сооружений.

Участие в заседаниях Временной рабочей группы Комиссии по транспортному праву Организации сотрудничества железных дорог (ОСЖД) по актуализации Правил перевозок опасных грузов

Представитель Ростехнадзора принял участие в совещании экспертов временной рабочей группы Комиссии по транспортному праву Организации сотрудничества железных дорог (ОСЖД) по актуализации Правил перевозок опасных грузов (15–20 февраля 2015 г., г. Варшава, Республика Польша), на котором рассматривались вопросы составления перечня действующих стандартов в рамках технических регламентов Таможенного союза для включения их наряду с европейскими стандартами (ЕН) в перечни стандартов для применения в Правилах перевозки опасных грузов.

Участие в мероприятиях по линии Организации Объединенных Наций по промышленному развитию (ЮНИДО)

Делегация Ростехнадзора приняла участие в рабочей встрече с представителями Организации Объединенных Наций по промышленному развитию (ЮНИДО) с целью ознакомления со специализированной программой ЮНИДО «Промышленная энергоэффективность в системе управления энергосистемами» (18–21 мая 2015 г., г. Вена, Австрия).

Российские специалисты ознакомились с программой «Промышленная энергоэффективность в системе управления энергосистемами» и проектами сотрудничества ЮНИДО с предприятиями в целях снижения потребления энергоресурсов, а также изучили опыт практического применения энергосистем, использующих возобновляемые источники энергии. Представители ЮНИДО проявили высокую степень заинтересованности в развитии дальнейшего сотрудничества с Ростехнадзором, как с одним из российских регуляторов в области энергосбережения и повышения энергоэффективности.

С 17 по 20 июня 2015 г. (г. Вена, Австрия) делегация Ростехнадзора приняла участие в работе 4-го Венского энергетического форума и работе круглого стола высокого уровня, организованных Организацией Объединенных Наций по промышленному развитию (ЮНИДО), Федеральным министерством Австрии по европейским и международным делам и Международным институтом прикладного системного анализа (IIASA).

В период с 29 ноября по 2 декабря 2015 г. (г. Вена, Австрия) делегация Ростехнадзора участвовала в 16-й сессии Генеральной конференции ЮНИДО «Устойчивая индустриализация для общего процветания», на которой российские специалисты ознакомились с руководящими рекомендациями ЮНИДО в области энергетики и защиты окружающей среды.

Участие в мероприятиях по линии Стокгольмской конвенции о стойких органических загрязнителях

В период с 3 по 8 мая 2015 г. (г. Женева, Швейцария) делегация Ростехнадзора приняла участие в 7-м совещании Конференции сторон Стокгольмской конвенции о стойких органических загрязнителях. В рамках работы контактной группы пред-
ставители Ростехнадзора настояли на принятии приемлемых для Российской Федерации формулировок в отношении ряда химических веществ, имеющих важное значение для российской промышленности.

Представитель Ростехнадзора принял участие в работе 11-го заседания Комитета по рассмотрению стойких органических загрязнителей Стокгольмской конвенции о стойких органических загрязнителях в качестве наблюдателя (18 — 24 октября 2015 г., г. Рим, Италия). При этом он довел до присутствующих позицию Российской Федерации по содержанию вынесенных на рассмотрение заседания проектов документов.

Участие в других мероприятиях (ассамблеи, конференции, симпозиумы, семинары, выставки и пр.), относящихся к компетенции Ростехнадзора

В рамках деятельности Международной организации канатного транспорта (МОКаТ) делегация Ростехнадзора приняла участие в семинаре на тему: «Последние достижения, новейшие технологии и последние результаты исследований в области строительства канатных дорог» (г. Инсбрук, Австрия, 15—17 апреля 2015 г.).

По окончании семинара генеральный секретарь МОКаТ г-н Маркус Питшайдер объявил о том, что заявка на вступление Ростехнадзора в МОКаТ, направленная во исполнение распоряжения Правительства Российской Федерации от 28 октября 2014 г. № 2143-р, была рассмотрена и одобрена руководящим комитетом организации.

Анализ полученных в 2015 г. от МОКаТ справочных материалов позволил в 2015 г. актуализировать Федеральные нормы и правила в области промышленной безопасности «Правила безопасности пассажирских канатных дорог и фуникулеров», а также гармонизировать их с международными стандартами безопасности.

11–12 ноября 2015 г. в Москве в рамках председательства Российской Федерации в БРИКС проведен Международный семинар органов регулирования промышленной безопасности «Эффективное регулирование промышленной безопасности как элемент стабильности национальной экономики».

Во время технической сессии «Регулирование промышленной безопасности» участники рассказали о системе нормативно-правового регулирования, структуре нормативных документов и обменялись информацией об осуществлении контроля и надзора на опасных производственных объектах, а также о предупреждении и ликвидации последствий крупных промышленных аварий и техногенных катастроф.

В ходе технической сессии «Безопасность объектов энергетики» выступающие рассказали о современных тенденциях регулирования безопасности в электроэнергетике, последних значимых изменениях в законодательстве в области надзора за объектами энергетики, об обеспечении безопасной эксплуатации гидротехнических сооружений и о мерах, предпринимаемых в целях повышения уровня энергоэффективности.

На технической сессии «Совершенствование мер по снижению аварийности и травматизма на опасных объектах. Взаимодействие национальных органов регулирования безопасности, охраны окружающей среды и органов по чрезвычайным ситуациям» выступающие проинформировали об осуществлении контрольно-надзорной деятельности на объектах угольной и металлургической промышленности, о совершенствовании нормативно-правового регулирования и о комплексе мер, направленных на снижение аварийности и травматизма на производстве. Кроме того, были также обсуждены вопросы разработки международной нормативной базы, в
том числе в области промышленной безопасности нефтегазового комплекса, а также вопросы добровольного подтверждения соответствия регламентам и стандартам безопасности.

На круглом столе обсуждались вопросы необходимости унификации подходов к осуществлению надзорной деятельности, к разработке требований по безопасности, провели оценку потенциала объединения БРИКС в поддержке продвижения международных правовых документов в сотрудничестве с международными организациями, а также рассмотрели возможность объединения усилий научных и промышленных структур для организации проведения научно-исследовательских работ в целях повышения уровня безопасности.

По итогам семинара участники подчеркнули актуальность задач и проблем, связанных с регулированием промышленной безопасности и безопасности в энергетике, а также отметили необходимость учитывать накопленный опыт и участвовать в деятельности всех международных организаций по вопросам регулирования промышленной безопасности и безопасности в энергетике.

Двустороннее сотрудничество

Сотрудничество с Республикой Беларусь

В Москве 11 ноября 2015 г. состоялась двусторонняя встреча руководства Ростехнадзора и Департамента по надзору за безопасным ведением работ в промышленности Министерства по чрезвычайным ситуациям Республики Беларусь. В ходе встречи руководители надзорных ведомств обменялись мнениями о направлениях двустороннего сотрудничества и одобрили План совместных мероприятий Федеральной службы по экологическому, технологическому и атомному надзору и Департамента по надзору за безопасным ведением работ в промышленности Министерства по чрезвычайным ситуациям Республики Беларусь на 2016–2017 гг.

Сотрудничество с Республикой Казахстан

Сотрудничество с Китаем

В Москве 17 июня и 23 сентября 2015 г. состоялись рабочие встречи представителей Ростехнадзора с делегацией Государственного управления производственной безопасности Китайской Народной Республики. На первой встрече обсуждались вопросы совершенствования системы безаварийного производства и дистанционного надзора, применение высоких технологий на опасных производственных объектах, тестирования и контроля в горнодобывающей и химической промышленности и других отраслях промышленности, а также совершенствования нормативно-правового регулирования в области промышленной безопасности. Вторая встреча с делегацией Государственного управления производственной безопасности Китайской Народной Республики проходила в рамках китайской программы обучения
пос вопросам безопасности на объектах угольной промышленности. Представители Ростехнадзора ознакомили китайскую делегацию с системой управления промышленной безопасностью на угольных шахтах, процедурой выдачи лицензий, а также довели до сведения информацию об уполномоченных органах Российской Федерации по выдаче лицензий, рассказали о многофункциональной системе безопасности и внедрении дистанционных форм надзора и контроля на объектах угольной промышленности.

12 ноября 2015 г. на полях международного семинара органов регулирования стран БРИКС «Эффективное регулирование промышленной безопасности как элемент стабильности национальной экономики» состоялась встреча руководителя Ростехнадзора А.В. Алешина и Заместителя Министра Государственного управления производственной безопасности Китая г-на Хуана Юджи. В ходе переговоров стороны выразили взаимную заинтересованность в продолжении и развитии двустороннего сотрудничества по вопросам регулирования промышленной безопасности объектов горнорудной и угольной промышленности, объектов химического и нефтехимического комплексов, объектов нефтегазового комплекса, включая магистральный трубопроводный транспорт, отметили взаимную заинтересованность в обмене информацией о расследовании причин аварий и опытом контрольно-надзорной деятельности на опасных производственных объектах.

Сотрудничество с Германией

В период с 5 по 8 октября 2015 г. (г. Мюнхен, ФРГ) делегация Ростехнадзора приняла участие в рабочей встрече с представителями ТЮФ ЗЮД по обсуждению вопросов осуществления надзора за соблюдением требований Директивы Европейского парламента и Европейского совета от 29 мая 1997 г. № 97/23/ЕС и Технического регламента Таможенного союза «О безопасности оборудования, работающего под избыточным давлением».

В ходе переговоров представители Ростехнадзора подробно изучили систему технического регулирования в Германии и место ТЮФ ЗЮД в этой системе, а также ознакомились с процессом реализации требований Директивы Европейского парламента и совета от 29 мая 1997 г. № 97/23/ЕС.

Сотрудничество с Финляндией

Сотрудничество с Эстонией

В период с 5 по 7 октября 2015 г. в г. Санкт-Петербурге представитель Ростехнадзора в составе российской делегации принял участие в XVIII заседании Совместной российско-эстонской комиссии по использованию трансграничных вод по реализации Соглашения между Правительством Эстонской Республики и Правительством Российской Федерации о сотрудничестве в области охраны и рационального использования трансграничных вод от 20 августа 1997 г.
Сотрудничество с Польшей

В период с 23 по 26 марта 2015 г (г. Краснодар, г. Сочи) состоялся визит делегации Управления по техническому надзору Республики Польша в Ростехнадзор, в ходе которого обсуждались вопросы надзора за соблюдением требований промышленной безопасности на опасных производственных объектах. Польская делегация ознакомилась: с организацией деятельности независимой системы аттестации сварочного оборудования, сварочных материалов и сварочных технологий, применяемых на опасных производственных объектах, поднадзорных Ростехнадзору; организацией аттестации специалистов и персонала сварочных производств; требованиями Технического регламента Таможенного союза «Безопасность лифтов», положениями законодательства Российской Федерации к организации осуществления контрольно-надзорных мероприятий за соблюдением требований технических регламентов, федеральных норм и правил в области промышленной безопасности на опасных производственных объектах.

Сотрудничество с Норвегией

В период с 16 по 17 сентября 2015 г. в Москве состоялась рабочая встреча представителей Ростехнадзора с делегацией Агентства по надзору за обеспечением безопасности нефтегазового производства Норвегии. Мероприятие было посвящено обсуждению вопросов регулирования в области промышленной безопасности на морских объектах нефтегазодобычи в арктических районах, а также разработке нормативных документов в вышеупомянутой области. По итогам встречи стороны подтвердили взаимную заинтересованность в дальнейшем развитии межведомственного сотрудничества по вопросам осуществления контроля и надзора в области промышленной безопасности на объектах нефтегазового комплекса.

Сотрудничество с Испанией

В Москве 9 октября 2015 г. состоялась рабочая встреча делегации Ростехнадзора с руководством испанской корпорации МАКСАМ с целью обсуждения вопросов обеспечения требований промышленной безопасности при производстве взрывчатых веществ и проведении взрывных работ.

Сотрудничество с Вьетнамом

Делегация Ростехнадзора приняла участие в рабочей встрече с представителями Агентства промышленной безопасности и экологии при Министерстве промышленности и торговли Вьетнама (13—17 апреля 2015 г., г. Ханой, Вьетнам). В ходе встречи стороны обменялись информацией о структуре, полномочиях и основных сферах деятельности надзорных ведомств в области промышленной безопасности и безопасности в энергетике.
Сотрудничество с Республикой Корея

Представители Ростехнадзора приняли участие в рабочих встречах с представителями южно-корейских компаний (нефтеперерабатывающего завода компании Yeochun NCC, предприятия по строительству морских платформ и судов компании Daewoo Shipbuilding & Marine Engineering, а также инжиниринговой компании Daelim — гражданское и промышленное строительство), состоявшихся 13—16 апреля 2015 г. в г. Сеул (Республика Корея). В ходе переговоров были изучены южно-корейская практика регулирования в области промышленной безопасности, эксплуатации этиленовых производств, а также опыт строительства платформ для добычи углеводородов на шельфе и применения риск-ориентированного подхода в нефтехимической и нефтеперерабатывающей промышленности.

Сотрудничество с Таиландом

10 апреля 2015 г. в г. Москве состоялась встреча представителей Ростехнадзора с делегацией Верховного административного суда Таиланда, находившейся в Москве в рамках программы 6-го учебного курса по административной юстиции для руководителей государственных органов Тайланда. В ходе этого мероприятия, организованного по просьбе МИД России, российская сторона представила информацию о деятельности Ростехнадзора в области организации и осуществления надзора за соблюдением требований промышленной безопасности и безопасности в энергетике.

Сотрудничество с Абхазией

16 октября 2015 г. в г. Сочи состоялась встреча руководителя Ростехнадзора и председателя Государственного комитета Республики Абхазия по стандартам, потребительскому и техническому надзору, в ходе которой был подписан Меморandum о сотрудничестве в области регулирования промышленной безопасности между Федеральной службой по экологическому, технологическому и атомному надзору и указанным абхазским ведомством.

Сотрудничество с Республикой Южная Осетия

В период с 7 по 11 сентября 2015 г. в г. Цхинвал (Республика Южная Осетия) состоялась рабочая встреча делегации Ростехнадзора с представителями Комитета экологического, технологического и строительного надзора Республики Южная Осетия (далее — Комитет) с целью оказания методического содействия в совершенствовании нормативных правовых документов по организации контрольно-надзорной деятельности на опасных производственных объектах и объектах электроэнергетики и подготовки плана совместных действий на 2016—2017 г.
Годовой отчет о деятельности Федеральной службы

годной произведен анализ нормативных правовых актов Республики Южная Осетия, регулирующих отношения в области осуществления государственного контроля (надзора) в части, касающейся государственного энергетического, строительного, экологического и других видов надзора, отнесенных к компетенции Комитета. Даны рекомендации по подготовке ряда нормативных правовых актов Республики Южная Осетия, определяющих полномочия и функции Комитета.

Результаты многостороннего и двустороннего взаимодействия Ростехнадзора подтверждают целесообразность использования международного сотрудничества в качестве эффективного инструмента совершенствования национальной регулирующей деятельности: ознакомление российских экспертов с международными подходами и хорошей практикой из первых рук, обмен знаниями и опытом по самым актуальным вопросам позволяют провести своего рода сравнительный анализ, что способствует выявлению как сильных сторон своей деятельности, так и тех ее аспектов, которые требуют улучшения.

Говоря об использовании результатов международного сотрудничества в ежедневной работе, можно привести такой пример, как учет норм безопасности МАГАТЭ, документов АЯЭ ОЭСР, а также регулирующих документов наших зарубежных партнеров при разработке и пересмотре российской нормативной базы.

Одним из важных направлений международного сотрудничества Ростехнадзора является оказание содействия органам регулирования стран, приступающих к использованию атомной энергетики на базе российских реакторных технологий, в развитии их систем регулирования безопасности при использовании атомной энергии в таких странах. В рамках этой деятельности осуществляется передача накопленного Ростехнадзором опыта регулирования безопасности АЭС с реакторами ВВЭР, в частности, в разработке национальных нормативно-правовых баз, осуществлении лицензионно-разрешительной и надзорной деятельности. Организуется подготовка зарубежных специалистов по указанным вопросам.
IV. КАДРОВАЯ ПОЛИТИКА

Характеристика и анализ кадрового состава центрального аппарата и территориальных органов Федеральной службы по экологическому, технологическому и атомному надзору.

Состояние укомплектованности штатов

В соответствии с постановлением Правительства Российской Федерации от 18 февраля 2013 г. № 137 «О предельной численности и фонде оплаты труда федеральных государственных гражданских служащих и работников, замещающих должности, не являющиеся должностями федеральной государственной гражданской службы, центральных аппаратов и территориальных органов федеральных органов исполнительной власти, а также об изменении и признании утратившими силу некоторых актов Правительства Российской Федерации» предельная численность работников центрального аппарата Федеральной службы по экологическому, технологическому и атомному надзору в 2015 г. составляла 733 единицы, территориальных органов Федеральной службы по экологическому, технологическому и атомному надзору — 7872 единицы.

Штатная численность работников территориальных органов, выполняющих функции по контролю и надзору, на конец 2015 г. составляла 5688 единиц (72,3 % от общей численности), из них:
- численность работников, выполняющих функции технологического надзора, составляла 2597 единиц, фактическая — 2225 человек (укомплектованность — 85,7 %, на конец I полугодия 2015 г. — 85,7 %);
- численность работников, выполняющих функции государственного энергетического надзора, составляла 2068 единиц, фактическая — 1846 (укомплектованность — 89,3 %, на конец I полугодия 2015 г. — 90,6 %);
- численность работников, выполняющих функции государственного строительного надзора, составляла 438 единиц, фактическая — 361 (укомплектованность — 82,4 %, на конец I полугодия 2015 г. — 84,8 %);
- численность работников, выполняющих функции атомного надзора, составляла 585 единиц, фактическая — 459 (укомплектованность — 78,5 %, на конец I полугодия 2015 г. — 79,5 %).

Укомплектованность кадрами территориальных органов Ростехнадзора на конец 2015 г. в среднем составляла 87,4 % (на конец I полугодия 2015 г. — 87,8 %).

В 2015 г. на государственную гражданскую службу в центральный аппарат Ростехнадзора принято 48 человек на должности государственной службы. За отчетный период уволено 35 государственных гражданских служащих (из них по инициативе государственного гражданского служащего 27 служащих — 77,14 %, в порядке перевода 2 служащих — 5,72 %, в связи с окончанием срочного служебного контракта 3 служащих — 8,57 %, в связи со смертью 1 служащий — 2,85 %, 2 служащих в связи с достижением предельного возраста государственной службы — 5,72 %).
Таким образом, текучесть кадров государственных гражданских служащих в 2015 г. составила 4,8 % от общей штатной численности (в 2014 г. — 4,4 %).

В территориальные органы Ростехнадзора за отчетный период принято 936 человек, уволено 1330. Текучесть кадров территориальных органов в 2015 г. составила 13,5 % (в 2014 г. — 8,6 %, в 2013 г. — 5,7 %, в 2012 г. — 9,2 %, в 2011 г. — 8,2 %, в 2010 г. — 17 %, в 2009 г. — 14 %, в 2008 г. — 15 %, в 2007 г. — 10,7 %).

![График изменения текучести кадров в Ростехнадзоре (2007-2015 гг.)](image)

Рис. 87. Текучесть кадров в Ростехнадзоре в 2007—2015 гг.

Данный показатель в территориальных органах Ростехнадзора сохраняется на высоком уровне, что в основном обусловлено неконкурентоспособностью денежного содержания государственных гражданских служащих заработной плате работников поднадзорных предприятий, а также отсутствием специалистов по определенным отраслевым направлениям.

Укомплектованность кадрами территориальных органов по состоянию на 31 декабря 2015 г. в среднем составила 87,4 %. Неполная укомплектованность государственными служащими по-прежнему наиболее характерна для межрегиональных территориальных управлений по надзору за ядерной и радиационной безопасностью — 81,4 % (так, в Центральном МТУ ЯРБ укомплектованность — 71,5 %). В то время как в территориальных управлениях по технологическому и экологическому надзору укомплектованность составляет 92,8 %.

Тенденция снижения средней укомплектованности кадрами территориальных органов Ростехнадзора сохраняется.

В целях привлечения на государственную гражданскую службу наиболее квалифицированных специалистов и в соответствии с законодательством о государственной службе в 2015 г. в центральном аппарате Ростехнадзора и его территориальных органах работали комиссии по проведению конкурса на замещение вакантной должности государственной гражданской службы.
Конкурс на замещение вакантных должностей в Ростехнадзоре проводится в соответствии с Федеральным законом от 27 июля 2004 г. № 79-ФЗ «О государственной гражданской службе Российской Федерации», Указом Президента Российской Федерации от 1 февраля 2005 г. № 112 «О конкурсе на замещение вакантной должности государственной гражданской службы Российской Федерации» (в редакции Указов Президента Российской Федерации от 22 января 2011 г. № 82; 19 марта 2013 г. № 208; 19 марта 2014 г. № 156) и Методикой проведения конкурса на замещение вакантной должности федеральной государственной гражданской службы в Федеральной службе по экологическому, технологическому и атомному надзору, утвержденной приказом Ростехнадзора от 20 ноября 2008 г. № 907 (в редакции приказов Ростехнадзора от 5 сентября 2011 г. № 500; 25 апреля 2012 г. № 265; 22 августа 2014 г. № 373).

В центральном аппарате за отчетный период были объявлены конкурсы, в том числе с использованием Федерального портала управленческих кадров, на замещение 17 вакантных должностей федеральной государственной гражданской службы, в конкурсе участвовали 71 гражданин, конкурс на две должности не состоялся по причине отсутствия кандидатов, 85 % конкурсантов признано выдержавшими условия второго этапа конкурса, 33 кандидата по результатам конкурса зачислены в кадровый резерв.

Территориальными органами был объявлен конкурс на замещение 784 вакантных должностей, при этом в 41 % проведенных мероприятий конкурс не состоялся по причине отсутствия кандидатов, изъявивших желание в них участвовать (в 2014 г. — 48 %): более чем в половине случаев конкурс не состоялся на замещение должностей инспекторского состава по направлениям горного надзора, энергетического надзора и надзора за подъемными сооружениями. По направлениям надзора за ядерной и радиационной безопасностью конкурс не состоялся на 50 % объявленных должностей.

В целях оказания помощи вновь принимаемым государственным гражданским служащим в ускорении процесса их профессиональной и социальной адаптации в коллективе, развитии способностей самостоятельно, качественно и ответственно выполнять функциональные обязанности в соответствии с замещаемой должностью федеральной государственной гражданской службы в 2015 г. в Ростехнадзоре в соответствии с Положением об организации работы по наставничеству в Федеральной службе по экологическому, технологическому и атомному надзору, утвержденным приказом Ростехнадзора от 24 декабря 2014 г. № 607, внедрен институт наставничества.

В целом государственные гражданские служащие центрального аппарата и территориальных органов Ростехнадзора обладают необходимым профессиональным образованием, профессиональным опытом и стажем государственной гражданской службы в соответствии с требованиями законодательства о государственной службе. Так, профессиональное образование имеют 100 % гражданских служащих по специальностям, соответствующим функциям и конкретным задачам, возложенным на Ростехнадзор в целом и на его структурные подразделения в отдельности (в соответствии с замещаемыми должностями). 97,1 % гражданских служащих имеют высшее образование, среднее профессиональное образование — 2,9 %. Из них около 70 % — высшее техническое образование, 6 % — высшее юридическое образование, 2 % — высшее образование по специальности государственное и муниципальное управление. 0,9 % работников имеют ученую степень кандидата наук, 0,4 % — доктора наук.
Удельный вес гражданских служащих в возрасте до 30 лет составляет 16,4 % от общего количества гражданских служащих, от 30 до 50 лет — 44,7 %, от 50 до 60 лет — 32,0 %, свыше 60 лет — 6,9 % (рис. 88).

Стаж работы в надзорных органах свыше 15 лет имеют 17,3 % государственных гражданских служащих, от 10 до 15 лет — 20,2 %, от 5 до 10 лет — 28,5 %, от 1 года до 5 лет — 24,7 %, до 1 года — 9,3 % работников (рис. 89).

В 2015 г. организация дополнительного профессионального образования государственных гражданских служащих Ростехнадзора проводилась в рамках госзаказа на 2015 г., утвержденного распоряжением Правительства Российской Федерации от 6 марта 2015 г. № 370-р, и в соответствии со ст. 62 Федерального закона от 27 июля 2004 г. № 79-ФЗ «О государственной гражданской службе Российской Федерации».

В рамках реализации государственного заказа на 2015 г. для обучения государственных служащих было привлечено 8 федеральных государственных образовательных учреждений высшего профессионального образования. По- вышение квалификации проходило по следующим направлениям:

- актуальные вопросы осуществления контрольно-надзорных мероприятий;
- применение законодательства об административной ответственности: протокол об административном правонарушении;
- организация и осуществление государственного энергетического надзора. Энергоснабжение и энергоэффективность;
- безопасность гидротехнических сооружений;
- порядок осуществления государственного контроля и надзора на основании Федерального закона от 26 декабря 2008 г. № 294-ФЗ «О защите прав юридических лиц и индивидуальных предпринимателей при осуществлении государственного контроля (надзора) и муниципального контроля»;
- основы технического диагностирования и прогнозирования срока безопасной эксплуатации объектов нефтяной и газовой промышленности;
- безопасность объектов котлонадзора;
- общие вопросы обеспечения промышленной безопасности при эксплуатации грузоподъемных сооружений;
безопасность строительства и осуществление строительного контроля;
осуществление надзорной деятельности за объектами систем газораспределения
и газопотребления;
экспертиза проектной документации. Порядок получения разрешений на со-
оружение, реконструкцию объектов использования атомной энергии. Государст-
венная экспертиза;
горный надзор;
организация и осуществление государственного надзора за экспортацией объ-
ектов металлургической промышленности;
nadзор за объектами нефтегазодобычи;
nadзор за взрывоопасными и химически опасными объектами (растительное сы-
рьё);
правовое регулирование лицензионной деятельности на опасных производст-
венных объектах;
классические стили руководства и их использование на государственной службе
в Российской Федерации;
размещение заказов на поставки товаров, выполнение работ, оказание услуг для
государственных нужд: проблемы и пути их решения;
государственная политика в области противодействия коррупции;
международное сотрудничество;
бухгалтерский учет в бюджетных организациях;
кадровая работа на государственной службе;
делопроизводство в государственных органах;
комплексная защита информации;
русский язык;
английский язык.

Общее количество федеральных государственных гражданских служащих Рос-
технадзора, прошедших повышение квалификации в рамках государственного за-
каза в 2015 г., составляет 924 человека.

Изменения в Положение о порядке получения дополнительного профессиональ-
ного образования государственными гражданскими служащими Российской Фе-
дерации, утвержденное Указом Президента Российской Федерации от 28 декабря
2006 г. №1474 «О дополнительном профессиональном образовании государственных
гражданских служащих Российской Федерации», позволили осуществлять дополни-
тельное профессиональное образование с применением дистанционных образова-
тельных технологий, а также с отрывом или без отрыва от исполнения должностных
обязанностей по замещаемой должности гражданской службы. С 2015 г. обучение
проводится в том числе и в дистанционном формате (полностью дистанционно —
11 программ (345 человек), частично (50 % в дистанционном формате) — 9 программ
(270 человек)), а также на территориях федеральных округов, что позволяет повы-
щать квалификацию государственных гражданских служащих территориальных ор-
ганов Ростехнадзора без отрыва от основной деятельности, сократить транспортные
и командировочные расходы.

Обучение проводилось в 8 городах Российской Федерации (Москва, Санкт-
Петербург, Ростов-на-Дону, Самара, Казань, Екатеринбург, Новосибирск, Хабаровск).
Также в 2015 г. в рамках государственного заказа прошел переподготовку (учеб-
ная программа 612 часов) один государственный гражданский служащий по теме
Вместе с тем повышение квалификации государственных гражданских служащих Ростехнадзора в 2015 г. осуществлялось и за счет средств, выделенных Министерством труда и социального развития Российской Федерации, по следующим направлениям:

- вопросы обеспечения открытости информации о деятельности государственных органов;
- современные кадровые технологии в государственном управлении;
- функции подразделений кадровых служб федеральных государственных органов по профилактике коррупционных и иных правонарушений;
- вопросы оценки эффективности деятельности государственных гражданских служащих;
- вопросы организации профессионального развития государственных гражданских служащих;
- стратегическое планирование и управление проектами в государственных органах;
- информационные технологии в государственном управлении;
- вопросы повышения качества предоставления государственных услуг;
- вопросы функционирования контрактной системы в сфере закупок товаров, работ, услуг для обеспечения государственных и муниципальных нужд;
- развитие института оценки регулирующего воздействия в сфере государственного регулирования;
- отдельные вопросы, связанные с интеграцией Российской Федерации в международные экономические отношения;
- реализация в государственных органах принципа открытости;
- защита государственной тайны;
- английский язык для федеральных государственных гражданских служащих, обеспечивающих взаимодействие Российской Федерации с ОЭСР.

Всего в 2015 г. получили дополнительное профессиональное образование 966 государственных гражданских служащих Ростехнадзора.

Динамика численности государственных служащих Ростехнадзора, прошедших повышение квалификации, за период с 2005 по 2015 г. отражена на рис. 90.

Наблюдаемая в настоящее время тенденция снижения количества обученных государственных служащих в 2009—2015 гг. объясняется сокращением объема средств, предусмотренных в федеральном бюджете на указанные годы.

В соответствии с Федеральным законом от 27 июля 2004 г. № 79-ФЗ «О государственной гражданской службе Российской Федерации», указами Президента Российской Федерации от 1 февраля 2005 г. № 111 «О порядке сдачи квалификационного экзамена государственными гражданскими служащими Российской Федерации и оценке их знаний, навыков и умений (профессионального уровня)» и от 1 февраля 2005 г. № 113 «О порядке присвоения и сохранения классных чинов государственной гражданской службы Российской Федерации федеральным государственным гражданским служащим» в 2015 г. классный чин государственной гражданской службы был присвоен 129 государственному гражданскому служащему центрального аппарата Ростехнадзора.
Трем государственным гражданским служащим центрального аппарата Ростехнадзора присвоен классный чин действительного государственного советника Российской Федерации 3-го и 2-го класса, 30 гражданским служащим центрального аппарата и территориальных органов Ростехнадзора присвоен классный чин государственного советника Российской Федерации 3, 2 и 1-го класса (распоряжения Правительства Российской Федерации от 31 марта 2015 г. № 561-р, от 19 мая 2015 г. № 905-р, от 4 августа 2015 г. № 1504-р).

В 2015 г. была проведена аттестация 75 федеральных государственных гражданских служащих центрального аппарата. По итогам аттестации все гражданские служащие признаны соответствующими замещаемой должности гражданской службы, из них 18 государственных гражданских служащих центрального аппарата включены в установленном порядке в кадровый резерв для замещения вакантной должности гражданской службы в порядке должностного роста.

Во всех территориальных управлениях Ростехнадзора созданы и постоянно действуют аттестационные комиссии, проводится плановая работа по присвоению классных чинов государственной гражданской службы и аттестации государственных служащих.

В 2015 г. проводилась плановая работа по назначению пенсий за выслугу лет и включению иных периодов работы в стаж государственной службы для назначения пенсии за выслугу лет бывшим государственным гражданским служащим территориальных органов и центрального аппарата Ростехнадзора.

Оформлено и направлено в Пенсионный фонд Российской Федерации 97 представлений на назначение пенсии по выслуге лет федеральных государственных гражданских служащих.

Представлено и направлено в Министерство труда и социальной защиты Российской Федерации 16 представлений на включение иных периодов работы в стаж государственной службы для назначения пенсии по выслуге лет.

За добросовестный труд, безупречную и эффективную службу в 2015 г. 3 государственных служащих центрального аппарата Ростехнадзора и его территориальных органов удостоены государственных наград Российской Федерации. Один государственный служащий Ростехнадзора награжден Почетной грамотой Президента Российской Федерации, 50 государственных гражданских служащих Ростехнадзора поощрены ведомственными наградами других министерств и ведомств (9 — ведомственными наградами Минэнерго России, 7 — ведомственными наградами Государственной корпорации по атомной энергии «Росатом», 8 чело-
Годовой отчет о деятельности Федеральной службы ветеран — Министерства обороны Российской Федерации, 26 человек — ведомственными наградами Федерального управления по безопасному хранению и уничтожению химического оружия в Российской Федерации).

За добросовестный труд, безупречную и эффективную гражданскую службу в 2015 г. ведомственными наградами Ростехнадзора награжден 681 человек.

В рамках проведения мероприятий, посвященных 70-летию Победы в Великой Отечественной войне 1941—1945 годов, ведомственными наградами Ростехнадзора поощрено 87 ветеранов Федеральной службы по экологическому, технологическому и атомному надзору.

Профилактика коррупционных и иных правонарушений

В рамках реализации Плана, а также в соответствии с Концепцией открытости федеральных органов власти принят комплекс системных мер по обеспечению открытости деятельности Ростехнадзора в сфере профилактики коррупции:

1. на официальном сайте Ростехнадзора в разделе «Противодействие коррупции» с целью повышения полноты, достоверности, актуальности и объективности размещается информация о ходе мероприятий, предусмотренных в том числе Планом (информация о доходах и расходах государственных служащих центрального аппарата, территориальных органов, руководителей подведомственных организаций, результаты работы комиссии по конфликту интересов, ее состав, ведомственные нормативные акты);

2. обеспечена возможность гражданам и юридическим лицам позвонить на телефон «горячей линии» для сообщения информации о противоправных деяниях со стороны государственных служащих Ростехнадзора, а также направить электронное сообщение о фактах коррупции;

3. обеспечена возможность задать вопрос на предмет действующих антикоррупционных стандартов посредством работы «прямой линии».

На официальном сайте предусмотрена возможность оценить работу должностных лиц, ответственных за профилактику коррупции в центральном аппарате и территориальных органах.

Принципы открытости соблюдаются также при раскрытии информации о готовящихся нормативных правовых актах Ростехнадзора путем размещения их на официальном сайте www.regulation.ru в информационно-телекоммуникационной сети «Интернет».

В 2015 г. уполномоченным подразделением центрального аппарата рассмотрено 38 обращений граждан и организаций коррупционной направленности (в 2014 г. — 71 обращение), из которых 30 направлено по принадлежности в правоохранительные органы.

По сведениям, указанным в обращениях, государственные гражданские служащие структурных подразделений центрального аппарата Ростехнадзора к дисциплинарной ответственности не привлекались. В территориальных органах Ростехнадзора
рассмотрено 23 обращения коррупционной направленности (в 2014 г. — 27 обращений). По результатам рассмотрения обращений три государственных гражданских служащих территориальных органов Ростехнадзора привлечены к дисциплинарной ответственности.

В 2015 г. в соответствии с Планом проведены комплексные мероприятия, направленные на исключение случаев получения подарков, связанных с исполнением государственными служащими Ростехнадзора своих должностных обязанностей в качестве вознаграждения за коррупционные действия. В декабре 2015 г. утверждено в новой редакции положение о сдаче подарков в соответствии с Типовым положением, утвержденным Правительством Российской Федерации.

В целях повышения квалификации должностных лиц, в должностные обязанности которых входит участие в противодействии коррупции, в 2015 г. организовано обучение 26 государственных гражданских служащих центрального аппарата и территориальных органов Ростехнадзора, в должностные обязанности которых входит участие в противодействии коррупции.

В 2015 г. по фактам совершения дисциплинарных проступков, то есть за неисполнение или ненадлежащее исполнение должностными лицами Ростехнадзора по их вине возложенных на них должностных обязанностей, центральным аппаратом проведено 19 служебных проверок, по результатам которых меры дисциплинарного воздействия применены к 3 руководителям территориальных органов Ростехнадзора, к 4 заместителям руководителей территориальных органов Ростехнадзора. К гражданским служащим центрального аппарата меры дисциплинарного воздействия не применялись.

Территориальными органами Ростехнадзора в 2015 г. было проведено 775 служебных проверок в отношении государственных служащих территориальных органов. К дисциплинарной ответственности привлечено 747 государственных гражданских служащих.

Основанием к проведению служебных проверок в большинстве случаев послужили представления органов прокуратуры, результаты проверок, связанных с нарушениями, допущенными при проведении контрольно-надзорных мероприятий.

Деятельность Комиссии по соблюдению требований к служебному поведению государственных гражданских служащих Ростехнадзора и урегулированию конфликта интересов

Деятельность Комиссии Ростехнадзора по соблюдению требований к служебному поведению федеральных государственных гражданских служащих и работников организаций, созданных для выполнения задач, поставленных перед Ростехнадзором, и урегулированию конфликта интересов (далее — Комиссия Ростехнадзора) осуществляется в соответствии с Положением, утвержденным приказом Ростехнадзора от 10 апреля 2015 г. № 142 (приказ зарегистрирован Минюстом России 8 мая 2015 г., регистрационный № 37210). Состав Комиссии Ростехнадзора утвержден приказом Ростехнадзора от 22 июня 2015 г. № 231.

В 2015 г. Комиссией Ростехнадзора проведено 7 заседаний, на которых рассмотрены: один материал, касающийся дачи согласия на замещение должности в коммерческой или некоммерческой организации либо на выполнение работы на условиях гражданско-правового договора (согласие дано); одно уведомление о намере-
нии выполнять иную работу; один материал, касающийся обеспечения соблюдения требований к служебному поведению; 6 материалов по представлению недостоверных и (или) неполных сведений о доходах, имуществе и обязательствах имущественного характера.

В отношении руководящего состава территориальных органов Ростехнадзора рассмотрены:

dва материала, касающиеся дачи согласия на замещение должности в коммерческой или некоммерческой организации либо на выполнение работы на условиях гражданско-правового договора (согласия даны); одно заявление о невозможности представления сведений о доходах, об имуществе, обязательствах имущественного характера государственным служащим на супругу, несовершеннолетних детей; 7 материалов по представлению недостоверных и (или) неполных сведений о доходах, имуществе и обязательствах имущественного характера.

Деятельность Комиссий территориальных органов Ростехнадзора по соблюдению требований к служебному поведению государственных гражданских служащих и урегулированию конфликта интересов (далее — Комиссии территориальных органов Ростехнадзора) осуществляется в соответствии с Положением о комиссии территориального органа Федеральной службы по экологическому, технологическому и атомному надзору по соблюдению требований к служебному поведению федеральных государственных гражданских служащих и урегулированию конфликта интересов, утвержденным приказом Ростехнадзора от 10 апреля 2015 г. № 143 (приказ зарегистрирован Минюстом России 15 мая 2015 г., регистрационный № 37301). Комиссии территориальных органов Ростехнадзора созданы и осуществляют свою деятельность во всех территориальных органах Ростехнадзора (29).

В 2015 г. Комиссиями территориальных органов Ростехнадзора проведено 285 заседаний, на которых рассмотрено:

193 заявления, касающиеся дачи согласия на замещение должности в коммерческой или некоммерческой организации либо на выполнение работы на условиях гражданско-правового договора (из них дано 179 согласий, отказано в 14 случаях);

37 материалов, касающихся соблюдения требований об объективности и уважительности причин непредставления сведений о доходах супруги (супруга) и несовершеннолетних детей (из них в одном случае причина непредставления сведений признана неуважительной);

39 материалов по представлению недостоверных и (или) неполных сведений о доходах, имуществе и обязательствах имущественного характера;

44 материала, касающиеся соблюдения требований к служебному поведению и (или) требований об урегулировании конфликта интересов либо осуществления мер по предупреждению коррупции.
V. ИНФОРМАЦИОННОЕ И ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДЕЯТЕЛЬНОСТИ

Основные направления и характеристика информационного и информационно-технологического обеспечения деятельности Ростехнадзора

Состояние и развитие системы и средств связи.
Материально-техническое обеспечение информатизации Ростехнадзора

В соответствии с утвержденной приказом Ростехнадзора от 15 сентября 2010 г. № 902 Концепцией информатизации Ростехнадзора и утвержденной приказом Ростехнадзора от 12 декабря 2011 г. № 698 ведомственной аналитической программой «Создание информационно-технологической инфраструктуры системы обеспечения промышленной безопасности», в целях решения проблем информатизации и организации единого информационного пространства в системе Ростехнадзора разработана и развивается Комплексная система информатизации и автоматизации деятельности (далее — КСИ Ростехнадзора), созданная единное информационное пространство и обеспечивающая информационную интеграцию административных и управленческих процессов на всех уровнях.

КСИ Ростехнадзора направлена на организацию информационного взаимодействия центрального аппарата Ростехнадзора и его территориальных органов как друг с другом, так и с иными федеральными органами исполнительной власти, органами исполнительной власти субъектов Российской Федерации (через единую систему межведомственного электронного взаимодействия — СМЭВ), поднадзорными организациями, а также, иными заинтересованными лицами.

КСИ Ростехнадзора обеспечивает автоматизацию основной и управленческой деятельности Ростехнадзора на всей территории Российской Федерации с доступом 24 часа в сутки, 365 дней в году.

В 2015 г. были продолжены работы по обеспечению технической поддержки функционирования, а также по развитию КСИ Ростехнадзора, продолжалась промышленная и опытная эксплуатация ранее созданных информационных подсистем КСИ Ростехнадзора.

Подсистема «Аварийность и травматизм» КСИ Ростехнадзора

Работниками отделов информатизации контрольно-надзорной деятельности и автоматизации и технологического обеспечения Правового управления регулярно проводились консультации для специалистов объединенной диспетчерской службы (далее — ОДС), отраслевых управлений центрального аппарата и территориальных органов.

В процессе эксплуатации в подсистему вносились доработки согласно полученным предложениям от работников ОДС и отраслевых управлений центрального апп-
Годовой отчет о деятельности Федеральной службы парата. С целью оптимизации работы в подсистеме был переработан жизненный цикл оперативных сообщений. В связи с актуализацией единого справочника видов надзоров были обновлены отчетные формы блока «Аварийность и травматизм» в подсистеме «Отчетность».

В течение 2015 г. осуществлялась постоянная техническая поддержка подсистемы.

Информационная подсистема «Реестр заключений экспертиз и деклараций промышленной безопасности» КСИ Ростехнадзора

В январе 2014 г. подсистема была внедрена в промышленную эксплуатацию.

В течение 2015 г. работа в подсистеме велась в штатном режиме, работниками отделов информатизации контрольно-надзорной деятельности и автоматизации и технологического обеспечения Правового управления осуществлялась техническая поддержка функционирования подсистемы.

В первой половине 2016 г. планируется разработать и внедрить функционал по автоматической выгрузке и обновлению сведений о заключениях экспертиз промышленной безопасности на официальных сайтах территориальных органов Ростехнадзора.

Подсистема «СПК-Мониторинг» КСИ Ростехнадзора

В 2015 г. подсистема КСИ «СПК-Мониторинг», направленная на получение в электронном виде сведений о производственном контроле от эксплуатирующих организаций, внедрена в промышленную эксплуатацию во всех территориальных управлениях Ростехнадзора.

По состоянию на декабрь 2015 г. в подсистему загружено порядка 6 тыс. отчетов по производственному контролю, полученных от эксплуатирующих организаций.

Определены порядок и объемы формирования отчетно-аналитических материалов на основе информации, содержащейся в этой подсистеме. Реализация указанного функционала в рамках КСИ Ростехнадзора запланирована на 2016 г.

Подсистема «Контрольно-надзорная деятельность» КСИ Ростехнадзора

В течение 2015 г. была продолжена работа с подсистемой всех территориальных (технологических) управлений Ростехнадзора в части пилотных отделов (не менее трех на управление). Накоплен достаточный массив информации, который позволил настроить отчетные формы в подсистеме «Отчетность» КСИ Ростехнадзора по осуществлению контрольно-надзорных функций Ростехнадзора в части автоматизированных в подсистеме видов надзора.

С начала 2016 г. планируется внедрить указанную подсистему в промышленную эксплуатацию во всех территориальных (технологических) управлениях Ростехнадзора в составе всех отделов, осуществляющих контрольно-надзорные функции.

Информационная система по регулированию безопасности в области использования атомной энергии

В течение 2015 г. проводилось сопровождение автоматизированной информационной системы по регулированию безопасности в области использования атомной энергии (далее — АИС ЯРБ). На основании предложений управлений центрально-
го аппарата, а также межрегиональных территориальных управлений по надзору за ядерной и радиационной безопасностью (далее — МТУ ЯРБ) были выполнены работы по доработке и актуализации АИС ЯРБ.

Продолжались работы по переводу АИС ЯРБ на новую платформу Web-технологий для создания единого информационного пространства, в том числе в рамках КСИ Ростехнадзора. Осуществлен перевод на Web-технологии подсистем, соответствующих функциональным областям:

- ведение реестра поднадзорных организаций, эксплуатирующих только радионуклидные источники 4-й и 5-й категорий радиационной опасности;
- подсистема сводной отчетности и отчетов по заданным критериям поиска;
- подсистема администрирования и настройки параметров отчетов;
- доработка подсистемы «Лицензирование видов деятельности в области использования атомной энергии» в соответствии с изменениями, внесенными в Административный регламент;
- разработка новой подсистемы «Учет событий на ОИАЭ».

Создан механизм передачи данных в электронном виде по лицензиям из АИС ЯРБ в Федеральную налоговую службу.

В настоящее время все шесть МТУ ЯРБ через Ведомственную сеть передачи данных Ростехнадзора (далее — ВСПД) подключены к центральному серверу, что позволяет перейти от территориально распределенных систем к централизованной системе и ведению единой базы данных. Для этого были проведены работы по переводу МТУ ЯРБ в единый домен Ростехнадзора, настройке маршрутизаторов и Firewall.

На регулярной основе проводилось консультирование пользователей АИС ЯРБ как в центральном аппарате, так и в МТУ ЯРБ.

В 2016 г. запланирована опытная эксплуатация версии АИС ЯРБ Web, осуществление миграции информации из базы данных АИС ЯРБ в АИС ЯРБ WEB и интеграции АИС ЯРБ WEB с КСИ Ростехнадзора, разработка механизма передачи данных по проверкам в электронном виде из АИС ЯРБ в Единый реестр проверок (ЕРП) Генеральной прокуратуры.

Совершенствование инфраструктуры ИТ

В отчетный период продолжилась работа по поддержанию и совершенствованию инфраструктуры ИТ центрального аппарата Ростехнадзора и его территориальных органов.

В результате реализации намеченных мер удалось либо полностью предотвратить, либо в значительной мере снизить отрицательные последствия от внешних угроз, влияющих на работоспособность средств автоматизации и информационного обеспечения работников Ростехнадзора.

Деятельность, направленная на построение гибкой и адаптивной ИТ инфраструктуры, позволила повысить производительность труда, а также в ряде случаев обеспечить экономию финансовых ресурсов. Так, в Ростехнадзоре второй год большинство семинаров и совещаний с участием территориальных органов проводится средствами системы Webex, что позволяет существенно экономить средства на командирование сотрудников, а также увеличить поддерживаемое количество участников совещаний. Эти же средства используются в ряде территориальных органов для проведения региональных семинаров (Енисейское управление Ростехнадзора).
Системными администраторами центрального аппарата Ростехнадзора проводилась работа по консультированию, помощи в конфигурировании и настройке оборудования и системного программного обеспечения аппаратно-программных комплексов территориальных органов Ростехнадзора. В случаях недостаточной квалификации работников территориальных органов Ростехнадзора осуществлялась настройка указанных комплексов удаленно из центрального аппарата.

Наряду с текущей работой по поддержке существующей инфраструктуры техническими специалистами производились работы по развитию используемых в Ростехнадзоре информационных сервисов (инструментов).

IP-телефония

В 2015 г. продолжалось подключение новых абонентов к единой системе IP-телефонии Ростехнадзора, количество которых на конец 2015 г. превысило три тысячи. Продолжилось подключение указанный системы к городским линиям в городах присутствия, что позволило значительно сократить финансовые издержки на связь за счет перевода телефонного трафика между работниками Ростехнадзора с междугородних тарифицируемых телефонных линий на внутренние, нетарифицируемые.

Произведено подключение к системе IP-телефонии Межрегионального территориального управления Ростехнадзора по Республике Крым и городу Севастополь, запланировано в 2016 г. оснастить указанное управление оборудованием для проведения видеоконференцсвязи. Также к системе IP-телефонии был подключен ряд удаленных отделов территориальных органов Ростехнадзора, в том числе ранее не имевших подключения к ВСПД.

Следует отметить, что система IP-телефонии способствует повышению производительности труда за счет существенного улучшения качества связи, что особенно заметно при телефонных разговорах с удаленными отделами. Кроме того, ведомственная система IP-телефонии предоставляет сотрудникам Ростехнадзора ряд дополнительных сервисов (инструментов): перевод звонка в сети, автоответчик и др.

Единый домен и система единой почты Ростехнадзора

В 2015 г. проводились работы по созданию системы единого домена и системы единой почты Ростехнадзора. В настоящее время в указанных системах полностью или частично работают 10 территориальных органов Ростехнадзора.

Система единого домена позволяет обеспечить возможность создания единых правил и политик в рамках всего Ростехнадзора, настроить единые системы авторизации, настроить единые политики безопасности. Это, в свою очередь, частично позволяет решить проблему надежности инфраструктуры и повысить уровень информационной безопасности, в том числе в условиях частой смены технического персонала на местах.

В рамках системы единого домена стал возможным перевод АИС ЯРБ на единый сервер, что позволило облегчить управление указанной информационной системой, облегчить контроль правильности вводимых данных и снизить издержки за счет уменьшения количества поддерживаемых в территориальных управлении элементов.

В рамках концепции единой почты была развернута распределенная почтовая система, позволившая привести в соответствие нормативным документам Ростехнадзора почтовые системы в территориальных управлениях. В большинстве случаев...
ев это предоставило возможность отказаться от хранения почтовых сообщений на внешних, не подконтрольных ИТ-специалистам Ростехнадзора площадках. В целом повышена надежность и безопасность передаваемой информации, обеспечены ранее отсутствующие сервисы (инструменты).

О востребованности систем единого домена и единой почты свидетельствует большое количество полученных от территориальных органов Ростехнадзора заявок об их заинтересованности подключиться к указанным системам в 2016 г.

Ведомственная сеть передачи данных

В 2015 г. продолжались работы по развитию Ведомственной сети передачи данных Ростехнадзора (ВСПД). По состоянию на конец 2015 г. ВСПД включает в себя центральный узел связи (ЦУС) и 105 виртуальных каналов связи от центрального узла связи до 105 объектов подключения в 29 территориальных органах Ростехнадзора.

Пропускная способность каналов связи ВСПД была выбрана в соответствии с намечаемыми объемами передачи данных из территориальных органов в центральный аппарат Ростехнадзора и обратно и составляет от 10 000 кбит/с до 50 000 кбит/с для всех точек подключения, за исключением 10 объектов, подключенных через спутниковые каналы связи со скоростью 2048 кбит/с. Каналы ВСПД оснащены специальными аппаратно-программными комплексами защиты информации, обеспечивающими защищенную передачу данных, в том числе имеющей конфиденциальный характер.

В 2015 г. наряду с ВСПД получила развитие собственная криптосеть Ростехнадзора, подключающая к ВСПД объекты территориальных органов Ростехнадзора, без необходимости предоставления дополнительных услуг оператором ВСПД по расширению количества подключенных объектов в составе ВСПД (в том числе в целях оптимизации финансовых затрат). Это дало возможность организовать взаимодействие с головными офисами (аппаратаами) территориальных органов, подключиться к централизованным системам делопроизводства и другим глобальным сервисам (инструментам) Ростехнадзора. В настоящее время в рамках указанной криптосети реализовано девять подключений, а также получены десятки заявок на организацию указанного подключения. Ограничивающий фактор развития этой системы — недостаток выделяемых территориальным управлением денежных средств.

В 2015 г. проводилось построение Единой системы резервного копирования (далее — ЕСРК) Ростехнадзора. В настоящий момент к ЕСРК подключены восемь территориальных органов, в которых осуществляется резервное копирование важных данных. К сожалению, развитие этой системы ограничено отсутствием необходимых ресурсов для хранения резервных копий и отсутствием человеческих ресурсов для быстрого внедрения указанной системы в структуре Ростехнадзора. Наличие полностью развернутой ЕСРК в будущем позволит избежать потери важных данных и сервисов (инструментов), что значительно повысит уровень информационной безопасности.

Заложенная в ЕСРК возможность многоразового резервирования и запуска на удаленных площадках сохраненных копий/сервисов позволит избежать (или существенно минимизировать) простои при осуществлении Ростехнадзором своей деятельности, даже при отказе в работоспособности инфраструктуры территориального органа.
Официальный сайт Ростехнадзора и сайт Межгосударственного совета по промышленной безопасности

В рамках реализации Указа Президента России от 7 мая 2012 г. № 601 «Об основных направлениях совершенствования системы государственного управления» Ростехнадзор с 2013 г. обеспечивает на своем официальном сайте доступ к открытым данным, содержащимся в различных информационных системах Ростехнадзора.

В официальном сайте Ростехнадзора в разделе «Открытые данные» представлено 9 первоочередных наборов открытых данных, в течение 2015 г. их актуальность поддерживалась на постоянной основе.

В 2015 г. сотрудники Ростехнадзора участвовали в семинарах и совещаниях, посвященных публикации и размещению открытых данных на сайте ведомства. Были также продолжены работы по технической поддержке сайта Межгосударственного совета по промышленной безопасности (www.mspbsng.org) и актуализации его содержания.

Автоматизированная информационная система «Отопительный период муниципальных образований»

Государственная регистрация автоматизированных информационных систем Ростехнадзора

В соответствии с постановлением Правительства Российской Федерации от 10 сентября 2009 г. № 723 «О порядке ввода в эксплуатацию отдельных государственных информационных систем» в 2015 г. была проведена актуализация сведений о федеральных государственных информационных системах, созданных и (или) эксплуатируемых Ростехнадзором (КСИ Ростехнадзора, АИС ЯРБ и других) в соответствии государственным реестре, который ведется Роскомнадзором.

Осуществлялась передача материалов завершенных работ по созданию (приобретению) программных средств по заказу Ростехнадзора в Фонд алгоритмов и программ Ростехнадзора.
Проведение Ростехнадзором государственных закупок в 2015 году

Для обеспечения исполнения полномочий Федеральной службы по экологическому, технологическому и атомному надзору в соответствии с нормами Федерального закона от 5 апреля 2013 г. № 44-ФЗ «О контрактной системе в сфере закупок товаров, работ, услуг для государственных и муниципальных нужд» (далее — Федеральный закон), вступившего в силу с 1 января 2014 г., в декабре 2013 г. была создана Контрактная служба Ростехнадзора, посредством образования отдела проведения государственных закупок в составе Управления делами.

В рамках реализации вышеуказанного закона Управлением делами были разработаны документы, регламентирующие государственные закупки для нужд Ростехнадзора, а именно:

- положение о контрактной службе Федеральной службы по экологическому, технологическому и атомному надзору;
- порядок работы закупочных комиссий;
- методика формирования начальных (максимальных) цен контрактов (цен лотов) для включения таких цен в документацию о торгах, в извещение о проведении запроса котировок, запроса предложений при размещении заказов;
- проекты типовых форм документов о проведении открытых конкурсов, двухэтапных конкурсов, аукционов в электронной форме, запросов котировок, запросов предложений;
- регламент по осуществлению Федеральной службой по экологическому, технологическому и атомному надзору ведомственного контроля в сфере закупок товаров, работ, услуг;
- положения о комиссиях по проведению внутренней экспертизы поставленного товара, выполненной работы, оказанной услуги.

Разработанные правовые акты доведены до территориальных органов и подведомственных организаций Ростехнадзора.

Одними из основных принципов осуществления закупок являются открытость и прозрачность. В целях реализации данных принципов, закупки товаров, работ, услуг проводятся преимущественно наиболее прозрачным способом размещения заказа — электронным аукционом, в соответствии с утвержденным планом-графиком, который размещается в сети Интернет на официальном сайте Единой информационной системы в сфере закупок www.zakupki.gov.ru.

По сравнению с 2014 г. объем закупок сократился.

Основной целью, стоящей перед Контрактной службой Ростехнадзора, является повышение эффективности проведения закупок товаров, работ, услуг. В целях недопущения неэффективного расходования бюджетных средств большое значение уделяется обоснованию начальной (максимальной) цены контракта. Приоритетным методом обоснования цены контракта является метод сопоставимых рыночных цен (анализ рынка) со ссылками на открытые и доступные источники информации.

Также в целях повышения эффективности расходования бюджетных средств приемка поставленного товара, результатов выполненной работы, оказанной услуги включает в себя обязательное проведение экспертизы. Экспертиза может быть проведена как с привлечением экспертов, экспертных организаций, так и силами заказчика (внутренняя экспертиза).
Для организации проведения внутренней экспертизы Управлением делами разработаны следующие положения:

о комиссии по проведению внутренней экспертизы поставленного товара, выполненной работы, оказанной услуги;

о комиссии по проведению внутренней экспертизы результатов научно-исследовательских, опытно-конструкторских и технологических работ (отдельных этапов научно-исследовательских, опытно-конструкторских и технологических работ).

Одной из приоритетных задач Федерального закона является развитие малого и среднего предпринимательства. На законодательном уровне установлено требование осуществления закупок у субъектов малого предпринимательства, социально ориентированных, некоммерческих организаций. В 2015 г. объем закупок у субъектов малого предпринимательства, социально ориентированных некоммерческих организаций составил 38 394 082 руб. (более 15 % от объема закупок).

В 2015 г. от участников процедур по размещению заказа в ФАС России была направлена одна жалоба на действия заказчика, которая признана необоснованной.

Счетная Палата Российской Федерации посчитала, что расчет начальной максимальной цены контракта на выполнение работ по выборочному капитальному и профилактическому ремонту в административном здании центрального аппарата Федеральной службы по экологическому, технологическому и атомному надзору, расположенному по адресу: г. Москва, ул. Таганская, д. 34, стр. 1 произведен с нарушением статьи 22 Федерального закона от 5 апреля 2013 г. № 44-ФЗ «О контрактной системе в сфере закупок товаров, работ, услуг для обеспечения государственных и муниципальных нужд». К возврату в федеральный бюджет причитается сумма 106,462 тыс. руб. излишне оплаченных бюджетных средств. Данные средства были возвращены подрядчиком.

В целях обеспечения контроля за соблюдением территориальными органами и подведомственными организациями, в том числе их контрактными службами и контрактными управляющими, законодательства Российской Федерации в сфере закупок товаров, работ, услуг для государственных и муниципальных нужд Ростехнадзором был разработан Регламент по осуществлению ведомственного контроля в сфере закупок товаров, работ, услуг.

В 2015 г. были проведены выборочные документарные проверки в Северо-Европейском межрегиональном территориальном управлении по надзору за ядерной и радиационной безопасностью Ростехнадзора, Уральском, Северо-Кавказском, Верхне-Донском управлениях Ростехнадзора.

По результатам проверки были выявлены следующие основные нарушения:

1. Несоответствие размещаемых форм документов, протоколов типовым формам, утвержденным приказом Ростехнадзора от 2 июня 2014 г. № 229.

2. Несоблюдение методики обоснования начальной (максимальной) цены, утвержденной приказом Ростехнадзора от 17 апреля 2014 г. № 158.

3. Несоответствие требований ст. 33 Федерального закона № 44-ФЗ «Правила описания объекта закупки».

По результатам проведенной проверки каждому территориальному органу направлены акты с рекомендациями по недопущению в дальнейшей работе выявленных нарушений и планы устранения выявленных недостатков.
VI. ФИНАНСИРОВАНИЕ ДЕЯТЕЛЬНОСТИ

Исполнение Федеральной службой по экологическому, технологическому и атомному надзору федерального бюджета в 2015 году

В соответствии с Федеральным законом от 1 декабря 2014 г. № 384-ФЗ «О федеральном бюджете на 2015 год и на плановый период 2016 и 2017 годов» (далее — Закон № 384-ФЗ) (с изменениями и дополнениями) Федеральная служба по экологическому, технологическому и атомному надзору является главным администратором доходов федерального бюджета.

На 2015 г. Ростехнадзору установлен прогнозный план поступления доходов в федеральный бюджет Российской Федерации в сумме 845 793,5 тыс. руб.

В 2015 г. при осуществлении центральным аппаратом и территориальными органами Ростехнадзора бюджетных полномочий главных администраторов (администраторов) доходов бюджетов бюджетной системы Российской Федерации в доход федерального бюджета фактически поступило 958 527,8 тыс. руб., или 113,3 % от прогнозного плана (по оперативным данным).

В соответствии с Законом № 384-ФЗ Ростехнадзору доведены бюджетные назначения в сумме 5 904 031,4 тыс. руб. Бюджетные ассигнования доведены в сумме 5 904 031,4 тыс. руб., лимиты бюджетных обязательств доведены в сумме 5 904 031,4 тыс. руб.

Исполнение (по оперативным данным) за 2015 г. составило 98,0 % от бюджетных ассигнований, 98,0 % от лимитов бюджетных обязательств.

Результативность распределения ассигнований федерального бюджета, администрируемых Ростехнадзором, в разрезе запланированных направлений за 2015 год

В 2015 г. Ростехнадзором осуществлялась реализация мероприятий в рамках следующих подпрограмм, федеральных целевых программ в рамках государственных программ Российской Федерации (далее — Программы):

подпрограмма «Развитие системы обеспечения промышленной безопасности» государственной программы Российской Федерации «Защита населения и территорий от чрезвычайных ситуаций, обеспечение пожарной безопасности и безопасности людей на водных объектах» (далее — Подпрограмма);

федеральная целевая программа «Жилище» на 2011 — 2015 гг. в рамках государственной программы Российской Федерации «Обеспечение доступным и комфортным жильем и коммунальными услугами граждан Российской Федерации»;

федеральная целевая программа «Обеспечение ядерной и радиационной безопасности на 2008 год и на период до 2015 года» в рамках государственной программы Российской Федерации «Развитие атомного энергопромышленного комплекса».

© Оформление. ЗАО НТЦ ПБ, 2016
Общий объем бюджетных ассигнований федерального бюджета, предусмотренный Ростехнадзору на реализацию мероприятий Программ, в 2015 г. составил 5 904 031,4 тыс. руб., в том числе:

подпрограмма «Развитие системы обеспечения промышленной безопасности» — 5 804 663,3 тыс. руб. (кассовое исполнение — 98%);

федеральная целевая программа «Жилище» на 2011—2015 гг. — 36 500,0 тыс. руб. (кассовое исполнение — 100%);

федеральная целевая программа «Обеспечение ядерной и радиационной безопасности на 2008 год и на период до 2015 года» — 62 868,1 тыс. руб. (кассовое исполнение — 100%).

Мероприятия федеральных целевых программ реализованы в полном объеме, отклонения от запланированных параметров отсутствуют.

К основным результатам, характеризующим достижение цели и решения задач Подпрограммы в отчетном периоде, необходимо отнести обеспечение необходимого уровня безопасности поднадзорных объектов. Ростехнадзором проведены контрольно-надзорные мероприятия на объектах использования атомной энергии, на опасных производственных объектах, объектах электроэнергетики, строительного комплекса, гидротехнических сооружениях. За 2015 г. общее количество проверок, проведенных в отношении юридических лиц, индивидуальных предпринимателей, составило 132 678 ед. (в том числе 81 957 ед. внеплановых проверок).

В целях повышения уровня гармонизации с международными стандартами и практикой регулирования безопасности при использовании атомной энергии необходимо выделить участие Ростехнадзора в пятом совещании Договаривающихся сторон по рассмотрению национальных докладов по выполнению положений Объединенной конвенции о безопасности обращения с отработавшим топливом и о безопасности обращения с радиоактивными отходами (11 — 22 мая 2015 г., Австрия, г. Вена). В результате обсуждения вышеупомянутых национальных докладов выработаны рекомендации и определены положительные практики в области обращения с отработавшим ядерным топливом (далее — ОЯТ) и радиоактивными отходами (далее — РАО), а также вопросы, связанные с безопасностью в указанной области, которые требуют дополнительного решения. Итоги состоявшегося совещания учитываются при осуществлении национальной регулирующей деятельности, в том числе при совершенствовании нормативно-правового регулирования безопасности в области обращения с ОЯТ и РАО.

Кроме того, в рамках деятельности Межгосударственного совета по промышленной безопасности (далее — МСПБ) в отчетном году:

проведен сопоставительный анализ систем государственного регулирования промышленной безопасности в области надзора за оборудованием, работающим под избыточным давлением в странах — участницах МСПБ;

проведен мониторинг состояния законодательства Евразийского экономического союза по техническому регулированию в части, касающейся технических устройств, применяемых на опасных производственных объектах.

В рамках деятельности Комиссии по координации сотрудничества государственных органов энергетического надзора государств — участников СНГ продолжена работа по разработке проекта правил по технике безопасности при эксплуатации электроустановок и проекта макета сборника нормативно-технических документов в области энергетического надзора, используемых в государствах — участниках СНГ.
Руководящим комитетом Международной организации канатного транспорта (далее — МОКаТ) 16 апреля 2015 г. в г. Инсбрук, Австрия, рассмотрена и одобрена заявка на вступление Ростехнадзора в МОКаТ, подготовленная во исполнение распоряжения Правительства Российской Федерации от 28 октября 2014 г. № 2143-р. Анализ полученных от МОКаТ справочных материалов позволил в 2015 г. актуализировать Федеральные нормы и правила в области промышленной безопасности «Правила безопасности пассажирских канатных дорог и фуникулеров», а также гармонизировать их с международными стандартами безопасности.

Для обеспечения эффективного нормативно-правового регулирования сферы промышленной, ядерной и радиационной безопасности, заключающегося в отсутствии дублирующих и избыточных способов государственного регулирования обеспечения безопасности опасных объектов, объектов использования атомной энергии, Ростехнадзором продолжается развитие риск-ориентированного подхода при осуществлении контрольно-надзорных мероприятий. В результате утверждены План первичных мероприятий по внедрению риск-ориентированного подхода в контрольно-надзорной деятельности Ростехнадзора и План мероприятий по внедрению риск-ориентированного подхода при осуществлении контрольно-надзорной деятельности в области использования атомной энергии на примере АЭС. Также внесен в Правительство Российской Федерации и одобрен в первом чтении Государственной Думой Федерального Собрания Российской Федерации проект федерального закона «О внесении изменений в Федеральный закон «О безопасности гидroteхнических сооружений», направленный на дифференциацию режима государственного надзора по классам гидротехнических сооружений.

В целях повышения степени открытости информации о состоянии сферы обеспечения безопасности поднадзорных объектов, регулировании в области обеспечения безопасности Ростехнадзор обеспечивает на официальном сайте доступ к открытым данным, содержащимся в информационных системах Ростехнадзора, в том числе к Планам проведения проверок юридических лиц и индивидуальных предпринимателей, статистической информации, сформированной Ростехнадзором в соответствии с Федеральным планом статистических работ по результатам проведенных плановых и внеплановых проверок. Также на официальном сайте Ростехнадзора реализован механизм «обратной связи» в рамках раздела «открытые данные».

Количественно ход реализации Подпрограммы в 2015 г. характеризуется достижением целевых значений показателей:
- снижение на 7 % риска возникновения аварий на опасных производственных объектах к базовому значению за 2011–2013 гг.;
- доля застрахованных опасных производственных объектов соответствует плановому значению и составляет 88,1 % от общего количества поднадзорных Ростехнадзору опасных производственных объектов;
- значения по показателям, отражающим исполнение Указа Президента Российской Федерации от 7 мая 2012 г. № 601 и включенным в перечень показателей Подпрограммы, соответствуют установленным Указом значениям.

Эффективность реализации Подпрограммы, оценка которой осуществлена в соответствии с Методическими указаниями по разработке и реализации государственных программ Российской Федерации (приказ Минэкономразвития России от 20 ноября 2013 г.), признается высокой.
ЗАКЛЮЧЕНИЕ

Деятельность Ростехнадзора в 2015 г. была направлена на обеспечение ядерной и радиационной безопасности объектов использования атомной энергии, защищенности опасных производственных объектов, объектов энергетики, работников данных объектов и населения, окружающей среды от угроз техногенного характера.

Состояние аварийности и травматизма на поднадзорных объектах, нарушения в работе объектов использования атомной энергии

На объектах использования атомной энергии в 2015 г. зарегистрировано 97 нарушений в работе объектов использования атомной энергии (в 2014 г. — 106 нарушений), из них:

35 нарушений на энергоблоках атомных электростанций (в 2014 г. зарегистрировано 43 нарушения);
12 нарушений на исследовательских ядерных установках (в 2013 г. — 5 нарушений);
15 нарушений на ядерных энергетических установках судов (в 2014 г. — 24 нарушения);
35 нарушений на радиационно опасных объектах (в 2014 г. — 34 нарушения).

Нарушений на предприятиях ядерного топливного цикла в 2014 и 2015 гг. не зарегистрировано.

При эксплуатационных происшествиях нарушений пределов и условий безопасной эксплуатации не было. Аварий на объектах использования атомной энергии, а также событий с радиационными последствиями не зарегистрировано. Радиоактивные сбросы и выбросы в окружающую среду были ниже допустимых уровней.

На опасных производственных объектах в 2015 г. произошло 174 аварии, что на 36 аварий больше, чем в 2014 г.

Снижение аварийности достигнуто в горнорудной промышленности (снижение на 1 аварию), на объектах нефтегазодобычи (снижение на 1 аварию), на объектах производства, хранения, применения взрывчатых материалов, промышленного назначения, за исключением организаций оборонно-промышленного комплекса (снижение на 1 аварию), на объектах транспортирования опасных веществ (снижение на 2 аварии). Значительно снизилась аварийность на объектах, использующих оборудование, работающее под давлением (снижение на 5 аварий).

Вместе с тем в 2015 г. по сравнению с 2014 г. произошел рост аварийности в металлургической промышленности (рост на 2 аварии), на предприятиях химического комплекса (рост на 2 аварии), на объектах магистрального трубопроводного транспорта (рост на 5 аварий). Значительно возросла аварийность на объектах, на которых используются подъемные сооружения (рост на 21 аварию), а также на объектах газораспределения и газопотребления (рост на 12 аварий).
При осуществлении производственной деятельности на поднадзорных Ростехнадзору предприятиях, эксплуатирующих опасные производственные объекты, в 2015 г. погибло 193 человека, что на 7 человек меньше, чем в 2014 г.

Значительное снижение смертельного травматизма зафиксировано в угольной промышленности (снижение составило 6 случаев), в горнорудной и нерудной промышленности, на объектах подземного строительства (снижение на 12 случаев), на объектах нефтехимической и нефтеперерабатывающей промышленности (снижение на 4 случая), на объектах, использующих оборудование, работающее по давлением (снижение на 6 случаев). Уменьшился смертельный травматизм также на объектах газораспределения и газопотребления, на взрывопожароопасных объектах растильного сырья и на объектах, связанных с транспортированием опасных веществ.

Вместе с тем в отдельных отраслях (видах надзора) отмечен рост смертельного травматизма, в частности, на предприятиях химического комплекса (смертельный травматизм увеличился на 4 случая), на объектах нефтегазодобычи (рост на 10 случаев), на объектах, на которых используются подъемные сооружения (рост на 7 случаев).

Отмечается снижение аварийности и травматизма при эксплуатации электростанций, электроустановок потребителей, электрических и тепловых сетей, тепловых установок и сетей, а также гидротехнических сооружений.

При эксплуатации тепловых установок и сетей погиб 1 человек (на 2 человека меньше, чем в 2014 г.). При эксплуатации гидротехнических сооружений в 2015 г. случаи смертельного травматизма не зафиксированы (в 2014 г. также несчастные случаи со смертельным исходом не зафиксированы).

Осуществление государственного контроля (надзора)
в установленной сфере деятельности

В 2015 г. Ростехнадзором проведено в общей сложности 132 678 проверок в отношении юридических лиц и индивидуальных предпринимателей, что на 6 % меньше, чем в 2014 г. (140 586 проверок).

В ходе проведения проверок выявлены правонарушения в отношении 42 473 юридических лиц и индивидуальных предпринимателей (в 2014 г. — 43 686), всего выявлено 763 189 правонарушений (в 2014 г. — 911 053).

По итогам проведенных проверок наложено 85 938 административных наказаний (в 2014 г. — 64 864), общая сумма наложенных административных штрафов составила 2 159 147 тыс. руб. (в 2014 г. — 1 956 565 тыс. руб.).
Годовой отчет о деятельности Федеральной службы

Лицензионная деятельность

В соответствии с законодательством о лицензировании отдельных видов деятельности за отчетный период Ростехнадзором предоставлено и переоформлено 9024 лицензии, отказано в выдаче 2050 лицензий.

В области использования атомной энергии в 2014 г. Ростехнадзором предоставлено и переоформлено 1853 лицензии, отказано в выдаче 15 лицензий.

Основные направления деятельности Ростехнадзора на 2016 год

1. Совершенствование системы государственного контроля (надзора) в установленной сфере деятельности Ростехнадзора в соответствии с Планом мероприятий («дорожной картой») по совершенствованию контрольно-надзорной деятельности в Российской Федерации на 2016–2017 годы, утвержденным распоряжением Правительства Российской Федерации от 1 апреля 2016 г. № 599-р.

2. Развитие сотрудничества с международными организациями и органами государственной власти иностранных государств.

3. Укрепление кадрового потенциала Ростехнадзора и совершенствование мер по противодействию коррупции.

4. Повышение эффективности использования средств федерального бюджета и федерального имущества.

5. В целях совершенствования системы государственного контроля (надзора) в установленной сфере деятельности Ростехнадзора предусмотреть реализацию следующих мероприятий:

5.1. Разработка и утверждение документов стратегического планирования, определяющих приоритетные направления, основные задачи и инструменты государственной политики в установленной сфере деятельности Ростехнадзора.

5.2. Внедрение риск-ориентированного подхода при организации и проведении контрольно-надзорных мероприятий, в том числе внедрение в деятельность территорий органов, осуществляющих федеральный государственный надзор в области промышленной безопасности, методики определения риск-ориентированного интегрального показателя промышленной безопасности.

5.3. Разработка и внедрение системы оценки результативности и эффективности контрольно-надзорной деятельности.

5.4. Выработка предложений по устранению устаревших, избыточных и дублирующих обязательных требований, соблюдение которых оценивается при проведении мероприятий по контролю.

5.5. Формирование перечней правовых актов, содержащих обязательные требования, с учетом отнесенных к сфере ведения Ростехнадзора видов государственного контроля (надзора).

5.6. Проведение профилактических мероприятий, направленных на предупреждение нарушений обязательных требований.

5.7. Развитие ведомственных информационных систем в целях обеспечения осуществления контрольно-надзорной деятельности.

5.8. Продолжение работы по созданию системы дистанционного контроля (надзора) промышленной безопасности опасных производственных объектов с применением современных информационно-коммуникационных технологий.
5.9. Реализация мероприятий, направленных на повышение уровня безопасности на поднадзорных объектах, в том числе в угольной отрасли, при эксплуатации грузоподъемных кранов, лифтов.

5.10. Обеспечение планирования контрольно-надзорных мероприятий в рамках нового вида надзора — федерального государственного энергетического надзора в сфере теплоснабжения.

5.11. Дифференциация мероприятий по контролю (надзору) в отношении гидroteхнических сооружений с учетом классов данных объектов.

5.12. Совершенствование механизмов осуществления контрольно-надзорной деятельности, в том числе путем обеспечения взаимодействия:

с заинтересованными органами государственной власти при осуществлении государственного строительного надзора на объектах, строительство которых осуществляется за счет средств федерального бюджета;

с собственниками предприятий, в том числе путем информирования их о результатах проведенных проверок;

с организациями, с которыми Ростехнадзором заключены соответствующие соглашения, в целях эффективного использования предусмотренных данными соглашениями механизмов совместной деятельности;

с представителями общественности, в том числе с региональными общественными палатами, профсоюзными организациями и средствами массовой информации.

5.13. Разработка единой методологии исполнения административных процедур в целях стандартизации контрольных и разрешительных функций Ростехнадзора.

6. В целях развития сотрудничества с международными организациями и органами государственной власти иностранных государств обеспечить:

6.1. Организацию и проведение заседания Форума органов регулирования стран, эксплуатирующих реакторы ВВЭР.

6.2. Подготовку к подписанию Соглашения между Ростехнадзором и Нигерийским органом регулирования ядерной безопасности о сотрудничестве в области регулирования ядерной и радиационной безопасности при использовании атомной энергии в мирных целях.

6.3. Выполнение работ по оказанию содействия органам регулирования стран — заказчиков сооружения АЭС по российским проектам (Бангладеш, Беларусь, Вьетнам, Египет, Иран) в совершенствовании их национальных систем регулирования безопасности при использовании атомной энергии в мирных целях.

6.4. Участие представителей Ростехнадзора в работе XIV заседания Межгосударственного совета СНГ по промышленной безопасности.

6.5. Проведение мероприятий (обучающие семинары, рабочие встречи) в рамках Меморандума между Ростехнадзором и Государственным комитетом Республики Абхазия по стандартам, потребительскому и техническому надзору и Плана совместных действий на 2016–2017 годы.

7. В целях укрепления кадрового потенциала Ростехнадзора и совершенствования мер по противодействию коррупции предусмотреть реализацию следующих мероприятий:

7.1. Организация дополнительного профессионального образования государственных служащих центрального аппарата и территориальных органов, осуществляющих контрольно-надзорные полномочия, с учетом использования риск-ориентированного подхода при организации и проведении контрольно-надзорных мероприятий.
7.2. Формирование системы оценки эффективности и результативности профессиональной служебной деятельности государственных гражданских служащих Ростехнадзора.

7.3. Совершенствование форм взаимодействия с научно-образовательной средой в целях формирования сетевого университета для подготовки специалистов в интересах Ростехнадзора и поднадзорных организаций.

7.4. Проведение мероприятий по поиску и привлечению квалифицированных специалистов на государственную гражданскую службу в Ростехнадзоре.

7.5. Формирование списка государственных служащих Ростехнадзора, способных эффективно передавать опыт.

7.6. Подготовка предложений по вопросу, связанному с назначением специального трудового стажа инспекторскому составу, осуществляющему надзор на опасных производственных объектах угольной промышленности.

7.7. Своевременное выполнение мероприятий, предусмотренных Планом противодействия коррупции Федеральной службы по экологическому, технологическому и атомному надзору на 2016—2017 годы.

7.8. Обеспечение соблюдения государственными служащими Ростехнадзора и его территориальных органов запретов, ограничений и требований, установленных в целях противодействия коррупции, контроль за применением мер по предотвращению и (или) урегулированию конфликта интересов.

8. В целях повышения эффективности использования средств федерального бюджета и федерального имущества обеспечить:

8.1. Снижение объемов дебиторской задолженности по доходам федерального бюджета, предусмотрев усиление контроля за уплатой административных штрафов, а также недопущение увеличения объемов дебиторской задолженности по авансированию договоров (государственных контрактов), по расчетам с подотчетными лицами, связанных с нарушением сроков расчетов.

8.2. Оптимизацию занимаемых объектов недвижимого имущества, соответствующую динамике сокращения штатной численности территориальных органов Ростехнадзора с учетом норматива, установленного постановлением Правительства Российской Федерации от 5 января 1998 г. № 3.

8.3. Обеспечить безусловное исполнение постановления Правительства Российской Федерации от 28 декабря 2015 г. № 1456 (с изменениями, внесенными постановлением Правительства Российской Федерации 4 апреля 2016 г. № 266), предусматривавшее:

- внесение изменений в план-график закупок в части срока размещения заказов на закупку товаров, работ, услуг не позднее 30 сентября 2016 г.;
- ограничение на установление авансовых платежей в соответствии с условиями договоров (государственных контрактов) о поставке отдельных товаров, работ, услуг, предусмотренных нормативными правовыми актами;
- ограничение в части использования экономии по фонду оплаты труда, возникшей в связи с наличием вакантных должностей, превышающих десять процентов утвержденной предельной штатной численности государственных гражданских служащих и работников, замещающих должности, не отнесенные к должностям государственной гражданской службы.
По вопросам приобретения нормативно-технической документации обращаться по тел./факсу (495) 620-47-53 (многоканальный)
E-mail: ornd@safety.ru